Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1307516, 2024.
Article in English | MEDLINE | ID: mdl-38884089

ABSTRACT

Introduction: Glioblastoma (grade IV) is the most aggressive primary brain tumor in adults, representing one of the biggest therapeutic challenges due to its highly aggressive nature. In this study, we investigated the impact of millimeter waves on tridimensional glioblastoma organoids derived directly from patient tumors. Our goal was to explore novel therapeutic possibilities in the fight against this challenging disease. Methods: The exposure setup was meticulously developed in-house, and we employed a comprehensive dosimetry approach, combining numerical and experimental methods. Biological endpoints included a global transcriptional profiling analysis to highlight possible deregulated pathways, analysis of cell morphological changes, and cell phenotypic characterization which are all important players in the control of glioblastoma progression. Results and discussion: Our results revealed a significant effect of continuous millimeter waves at 30.5 GHz on cell proliferation and apoptosis, although without affecting the differentiation status of glioblastoma cells composing the organoids. Excitingly, when applying a power level of 0.1 W (Root Mean Square), we discovered a remarkable (statistically significant) therapeutic effect when combined with the chemotherapeutic agent Temozolomide, leading to increased glioblastoma cell death. These findings present a promising interventional window for treating glioblastoma cells, harnessing the potential therapeutic benefits of 30.5 GHz CW exposure. Temperature increase during treatments was carefully monitored and simulated with a good agreement, demonstrating a negligible involvement of the temperature elevation for the observed effects. By exploring this innovative approach, we pave the way for improved future treatments of glioblastoma that has remained exceptionally challenging until now.

2.
Int J Radiat Oncol Biol Phys ; 109(5): 1495-1507, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33509660

ABSTRACT

PURPOSE: Cancer stem cells constitute an endless reserve for the maintenance and progression of tumors, and they could be the reason for conventional therapy failure. New therapeutic strategies are necessary to specifically target them. In this context, microsecond pulsed electric fields have been selected to expose D283Med cells, a human medulloblastoma cell line resulted to be rich in cancer stem cells, and normal human astrocytes. METHODS: We analyzed in vitro different endpoints at different times after microsecond pulsed electric field exposure, such as permeabilization, reactive oxygen species generation, cell viability/proliferation, cell cycle, and clonogenicity, as well as the expression of different genes involved in cell cycle, apoptosis, and senescence. Furthermore, the response of D283Med cells exposed to microsecond pulsed electric fields was validated in vivo in a heterotopic mouse xenograft model. RESULTS: Our in vitro results showed that a specific pulse protocol (ie, 0.3 MV/m, 40 µs, 5 pulses) was able to induce irreversible membrane permeabilization and apoptosis exclusively in medulloblastoma cancer stem cells. In the surviving cells, reactive oxygen species generation was observed, together with a transitory G2/M cell-cycle arrest with a senescence-associated phenotype via the upregulation of GADD45A. In vivo results, after pulsed electric field exposure, demonstrated a significant tumor volume reduction with no eradication of tumor mass. In conjunction, we verified the efficacy of electric pulse pre-exposure followed by ionizing irradiation in vivo to enable complete inhibition of tumor growth. CONCLUSIONS: Our data reveal novel therapeutic options for the targeting of medulloblastoma cancer stem cells, indicating nonionizing pulsed electric field pre-exposure as an effective means to overcome the radioresistance of cancer stem cells.


Subject(s)
Cerebellar Neoplasms/therapy , Electroporation/methods , Medulloblastoma/therapy , Neoplastic Stem Cells/physiology , Animals , Apoptosis/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Membrane Permeability , Cell Proliferation , Cell Survival , Cellular Senescence/genetics , Cerebellar Neoplasms/pathology , Female , G2 Phase Cell Cycle Checkpoints/genetics , Genes, cdc , Humans , M Phase Cell Cycle Checkpoints/genetics , Medulloblastoma/pathology , Mice , Mice, Nude , Radiation Tolerance , Reactive Oxygen Species/metabolism , Tumor Burden , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...