Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3885, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794089

ABSTRACT

Coupled compartmentalised information processing and communication via molecular diffusion underpin network based population dynamics as observed in biological systems. Understanding how both compartmentalisation and communication can regulate information processes is key to rational design and control of compartmentalised reaction networks. Here, we integrate PEN DNA reactions into semi-permeable proteinosomes and characterise the effect of compartmentalisation on autocatalytic PEN DNA reactions. We observe unique behaviours in the compartmentalised systems which are not accessible under bulk conditions; for example, rates of reaction increase by an order of magnitude and reaction kinetics are more readily tuneable by enzyme concentrations in proteinosomes compared to buffer solution. We exploit these properties to regulate the reaction kinetics in two node compartmentalised reaction networks comprised of linear and autocatalytic reactions which we establish by bottom-up synthetic biology approaches.


Subject(s)
Artificial Cells , DNA , Kinetics , Synthetic Biology
2.
Chem Commun (Camb) ; 54(3): 287-290, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29231937

ABSTRACT

Herein we describe a novel microfluidic method for the generation of proteinosome micro-droplets, based on bovine serum albumin and glucose oxidase conjugated to PNIPAAm chains. The size of such water-in-oil droplets is regulated via control of the input reagent flow rate, with generated proteinosome populations exhibiting narrower size distributions than those observed when using standard bulk methodologies. Importantly, proteinosomes transferred from an oil to an aqueous-environment remain intact, become fully hydrated and exhibit an increase in average size. Moreover, functional proteinosomes prepared via microfluidics exhibit lower Km values and higher enzymatic activities than proteinosomes produced by bulk methodologies.


Subject(s)
Artificial Cells/chemistry , Glucose Oxidase/chemistry , Serum Albumin, Bovine/chemistry , Acrylic Resins/chemistry , Animals , Cattle , Fluorescein-5-isothiocyanate/chemistry , Horseradish Peroxidase/chemistry , Microfluidics , Particle Size
3.
Nat Chem ; 9(10): 990-996, 2017 10.
Article in English | MEDLINE | ID: mdl-28937677

ABSTRACT

During embryo development, patterns of protein concentration appear in response to morphogen gradients. These patterns provide spatial and chemical information that directs the fate of the underlying cells. Here, we emulate this process within non-living matter and demonstrate the autonomous structuration of a synthetic material. First, we use DNA-based reaction networks to synthesize a French flag, an archetypal pattern composed of three chemically distinct zones with sharp borders whose synthetic analogue has remained elusive. A bistable network within a shallow concentration gradient creates an immobile, sharp and long-lasting concentration front through a reaction-diffusion mechanism. The combination of two bistable circuits generates a French flag pattern whose 'phenotype' can be reprogrammed by network mutation. Second, these concentration patterns control the macroscopic organization of DNA-decorated particles, inducing a French flag pattern of colloidal aggregation. This experimental framework could be used to test reaction-diffusion models and fabricate soft materials following an autonomous developmental programme.

SELECTION OF CITATIONS
SEARCH DETAIL
...