Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Robot ; 7(65): eabg5561, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35417202

ABSTRACT

The effects of robotics and artificial intelligence (AI) on the job market are matters of great social concern. Economists and technology experts are debating at what rate, and to what extent, technology could be used to replace humans in occupations, and what actions could mitigate the unemployment that would result. To this end, it is important to predict which jobs could be automated in the future and what workers could do to move to occupations at lower risk of automation. Here, we calculate the automation risk of almost 1000 existing occupations by quantitatively assessing to what extent robotics and AI abilities can replace human abilities required for those jobs. Furthermore, we introduce a method to find, for any occupation, alternatives that maximize the reduction in automation risk while minimizing the retraining effort. We apply the method to the U.S. workforce composition and show that it could substantially reduce the workers' automation risk, while the associated retraining effort would be moderate. Governments could use the proposed method to evaluate the unemployment risk of their populations and to adjust educational policies. Robotics companies could use it as a tool to better understand market needs, and members of the public could use it to identify the easiest route to reposition themselves on the job market.


Subject(s)
Robotics , Artificial Intelligence , Automation , Employment , Humans , Occupations
2.
J Cogn Neurosci ; 34(4): 655-674, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35061029

ABSTRACT

Spatial attention enhances sensory processing of goal-relevant information and improves perceptual sensitivity. Yet, the specific neural mechanisms underlying the effects of spatial attention on performance are still contested. Here, we examine different attention mechanisms in spiking deep convolutional neural networks. We directly contrast effects of precision (internal noise suppression) and two different gain modulation mechanisms on performance on a visual search task with complex real-world images. Unlike standard artificial neurons, biological neurons have saturating activation functions, permitting implementation of attentional gain as gain on a neuron's input or on its outgoing connection. We show that modulating the connection is most effective in selectively enhancing information processing by redistributing spiking activity and by introducing additional task-relevant information, as shown by representational similarity analyses. Precision only produced minor attentional effects in performance. Our results, which mirror empirical findings, show that it is possible to adjudicate between attention mechanisms using more biologically realistic models and natural stimuli.


Subject(s)
Neural Networks, Computer , Neurons , Humans , Neurons/physiology
3.
Front Neurosci ; 12: 987, 2018.
Article in English | MEDLINE | ID: mdl-30670943

ABSTRACT

Artificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of communication. This contrasts sharply with biological neurons that communicate sparingly and efficiently using isomorphic binary spikes. While Spiking Neural Networks (SNNs) can be constructed by replacing the units of an ANN with spiking neurons (Cao et al., 2015; Diehl et al., 2015) to obtain reasonable performance, these SNNs use Poisson spiking mechanisms with exceedingly high firing rates compared to their biological counterparts. Here we show how spiking neurons that employ a form of neural coding can be used to construct SNNs that match high-performance ANNs and match or exceed state-of-the-art in SNNs on important benchmarks, while requiring firing rates compatible with biological findings. For this, we use spike-based coding based on the firing rate limiting adaptation phenomenon observed in biological spiking neurons. This phenomenon can be captured in fast adapting spiking neuron models, for which we derive the effective transfer function. Neural units in ANNs trained with this transfer function can be substituted directly with adaptive spiking neurons, and the resulting Adaptive SNNs (AdSNNs) can carry out competitive classification in deep neural networks without further modifications. Adaptive spike-based coding additionally allows for the dynamic control of neural coding precision: we show empirically how a simple model of arousal in AdSNNs further halves the average required firing rate and this notion naturally extends to other forms of attention as studied in neuroscience. AdSNNs thus hold promise as a novel and sparsely active model for neural computation that naturally fits to temporally continuous and asynchronous applications.

4.
IEEE Trans Biomed Circuits Syst ; 8(5): 669-80, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25314706

ABSTRACT

The vestibular system plays a crucial role in the sense of balance and spatial orientation in mammals. It is a sensory system that detects both rotational and translational motion of the head, via its semicircular canals and otoliths respectively. In this work, we propose a real-time hardware model of an artificial vestibular system, implemented using a custom neuromorphic Very Large Scale Integration (VLSI) multi-neuron chip interfaced to a commercial Inertial Measurement Unit (IMU). The artificial vestibular system is realized with spiking neurons that reproduce the responses of biological hair cells present in the real semicircular canals and otholitic organs. We demonstrate the real-time performance of the hybrid analog-digital system and characterize its response properties, presenting measurements of a successful encoding of angular velocities as well as linear accelerations. As an application, we realized a novel implementation of a recurrent integrator network capable of keeping track of the current angular position. The experimental results provided validate the hardware implementation via comparisons with a detailed computational neuroscience model. In addition to being an ideal tool for developing bio-inspired robotic technologies, this work provides a basis for developing a complete low-power neuromorphic vestibular system which integrates the hardware model of the neural signal processing pathway described with custom bio-mimetic gyroscopic sensors, exploiting neuromorphic principles in both mechanical and electronic aspects.


Subject(s)
Hair Cells, Vestibular/physiology , Models, Neurological , Neurons/physiology , Vestibule, Labyrinth/physiology , Animals , Computational Biology , Electronics , Humans , Otolithic Membrane/physiology , Primates
SELECTION OF CITATIONS
SEARCH DETAIL
...