Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Recent Pat Biotechnol ; 15(3): 169-183, 2021.
Article in English | MEDLINE | ID: mdl-34353276

ABSTRACT

Extremophilic microorganisms from a wide variety of extreme natural environments have been researched, and many biotechnological applications have been carried out, due to their capacity to produce biomolecules resistant to extreme conditions, such as fibrinolytic proteases. The search for new fibrinolytic enzymes is important in the development of new therapies against cardiovascular diseases. This article aimed to evaluate the patents filed about protease with fibrinolytic activity produced by extremophilic microorganisms whose use is aimed at the development of new drugs for the treatment of cardiovascular diseases. The prospecting was carried out using data on deposits and patent concessions made available on the technological bases: European Patent Office (EPO), United States Patent and Trademark Office (USPTO), World Intellectual Property Organization (WIPO), Instituto Nacional de Propriedade Industrial - Brazil (INPI), The LENS and Patent Inspiration. The International Patent Classification and subclasses and groups for each document were also evaluated. Although 382 patents were selected using terms related to extreme environments, such as "thermophile" and "acidophiles", few were related to clinical use and were mainly performed using Bacillus subtilis and Streptomyces megasporus strains. A highlight of nattokinase was produced by Bacillus subtilis GDN and actinokinase by Streptomyces megasporus SD5. The low number of patents on enzymes with this profile (extreme environments) revealed a little-explored field, promising in the development of new microbial thrombolytic drugs, such as fibrinolytic enzymes with less adverse effects.


Subject(s)
Extremophiles , Biotechnology , Intellectual Property , Patents as Topic , Thrombolytic Therapy , United States
2.
Heliyon ; 7(2): e06144, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33604472

ABSTRACT

Cigarette product waste contains toxic chemicals, including human carcinogens, which leach into and accumulate in the environment and represent a current environmental problem neglected for too long. This study aimed to select filamentous fungi capable of decreasing tobacco extract toxicity as an alternative to a future bioremediation process. The 38 isolates obtained from Culture collection of microorganisms to biotechnological and environmental importance - CCMIBA (Brazil) were cultivated in yeast extract (10 g.L-1) and dextrose (10 g.L-1) containing cigarette tobacco extract (200 mL.L-1) for seven days at 28 °C on a rotary shaker at 150 rpm. The fungal growth rate was determined to infer fungal tolerance to tobacco extract, and supernatants from cultivated fungi were used to run the toxicity test using Allium cepa assay. The Fusarium sp. strain I.17, isolated from cigarette waste, was the only lineage capable of growing in 20% (v/v) of cigarette tobacco extract, allowed the onions to root, and was selected for optimization. Initially, for the experimental design to selected fungus, a fractional factorial experimental design 25-1 was used to examine the effects of yeast extract, cigarette tobacco extract concentration, dextrose, copper sulfate and pH fungal cultivation. The supernatants of these assays were used to run the toxicity test, and yeast extract and copper sulfate were statistically significant in the fungal growth for the decreasing toxicity process and this variable as were select to central composite design. The highest concentration of yeast extract negatively influenced the toxicity decrease, 0.5% of yeast extract in the culture media is the maximum concentration to achieve the best result and to copper sulfate the best result was using 10 µmol.L-1. In conclusion, the experimental design optimized more than seven times the efficiency of tobacco toxicity reducing, resulting in more than 50% of onion root growth, demonstrating the methodology success. And ITS region was used to taxonomy and molecular phylogeny of the isolate Fusarium sp. strain I.17. These results suggest that Fusarium sp. strain I.17 can be used as a potential microorganism to toxicity treatment of cigarette wastes, minimizing the environmental impact of direct burning.

SELECTION OF CITATIONS
SEARCH DETAIL
...