Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35409524

ABSTRACT

The COVID-19 pandemic highlighted health systems vulnerabilities, as well as thoughtlessness by governments and society. Due to the nature of this contingency, the use of geographic information systems (GIS) is essential to understand the SARS-CoV-2 distribution dynamics within a defined geographic area. This work was performed in Tepic, a medium-sized city in Mexico. The residence of 834 COVID-19 infected individuals was georeferenced and categorized by viral load (Ct). The analysis took place during the maximum contagion of the first four waves of COVID-19 in Mexico, analyzing 158, 254, 143, and 279 cases in each wave respectively. Then heatmaps were built and categorized into five areas ranging from very low to very high risk of contagion, finding that the second wave exhibited a greater number of cases with a high viral load. Additionally, a spatial analysis was performed to measure urban areas with a higher risk of contagion, during this wave this area had 19,203.08 km2 (36.11% of the city). Therefore, a kernel density spatial model integrated by meaningful variables such as the number of infected subjects, viral load, and place of residence in cities, to establish geographic zones with different degrees of infection risk, could be useful for decision-making in future epidemic events.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Geographic Information Systems , Humans , Mexico/epidemiology , Pandemics , Viral Load
2.
Mar Drugs ; 20(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35200630

ABSTRACT

Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, anti-viral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for COVID-19 recovery. This work aimed to determine the ex-vivo effects of treatment with fucoidan (20 µg/mL) on mitochondrial membrane potential (ΔΨm, using a cationic cyanine dye, 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3)) on human peripheral blood mononuclear cells (HPBMC) isolated from healthy control (HC) subjects, COVID-19 patients (C-19), and subjects that recently recovered from COVID-19 (R1, 40 ± 13 days after infection). In addition, ex-vivo treatment with fucoidan (20 and 50 µg/mL) was evaluated on ΔΨm loss induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 150 µM) in HPBMC isolated from healthy subjects (H) and recovered subjects at 11 months post-COVID-19 (R2, 335 ± 20 days after infection). Data indicate that SARS-CoV-2 infection induces HPBMC loss of ΔΨm, even 11 months after infection, however, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered subjects. Therefore, fucoidan may be a potential treatment to diminish long-term sequelae from COVID-19, using mitochondria as a therapeutic target for the recovery of cellular homeostasis.


Subject(s)
COVID-19 , Leukocytes, Mononuclear/drug effects , Membrane Potential, Mitochondrial/drug effects , Polysaccharides/pharmacology , SARS-CoV-2 , Adult , Aged , Female , Humans , Leukocytes, Mononuclear/physiology , Male , Middle Aged , Mitochondria/drug effects , Phaeophyceae/chemistry , Polysaccharides/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...