Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
New Phytol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874372

ABSTRACT

A few Capsicum (pepper) species produce yellow-colored floral nectar, but the chemical identity and biological function of the yellow pigment are unknown. A combination of analytical biochemistry techniques was used to identify the pigment that gives Capsicum baccatum and Capsicum pubescens nectars their yellow color. Microbial growth assays, visual modeling, and honey bee preference tests for artificial nectars containing riboflavin were used to assess potential biological roles for the nectar pigment. High concentrations of riboflavin (vitamin B2) give the nectars their intense yellow color. Nectars containing riboflavin generate reactive oxygen species when exposed to light and reduce microbial growth. Visual modeling also indicates that the yellow color is highly conspicuous to bees within the context of the flower. Lastly, field experiments demonstrate that honey bees prefer artificial nectars containing riboflavin. Some Capsicum nectars contain a yellow-colored vitamin that appears to play roles in (1) limiting microbial growth, (2) the visual attraction of bees, and (3) as a reward to nectar-feeding flower visitors (potential pollinators), which is especially interesting since riboflavin is an essential nutrient for brood rearing in insects. These results cumulatively suggest that the riboflavin found in some Capsicum nectars has several functions.

2.
Ecol Evol ; 13(7): e10293, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37435020

ABSTRACT

Dynamic colour change is widespread in ectothermic animals, but has primarily been studied in the context of background matching. For most species, we lack quantitative data on the extent of colour change across different contexts. It is also unclear whether and how colour change varies across body regions, and how overall sexual dichromatism relates to the extent of individual colour change. In this study, we obtained reflectance measures in response to different stimuli for males and females of six species of agamid lizards (Agamidae, sister family to Chameleonidae) comprising three closely related species pairs. We computed the colour volume in a lizard-vision colour space occupied by males and females of each species and estimated overall sexual dichromatism based on the area of non-overlapping male and female colour volumes. As expected, males had larger colour volumes than females, but the extent of colour change in males differed between species and between body regions. Notably, species that were most sexually dichromatic were not necessarily those in which males showed the greatest individual colour change. Our results indicate that the extent of colour change is independent of the degree of sexual dichromatism and demonstrate that colour change on different body regions can vary substantially even between pairs of closely related species.

3.
New Phytol ; 239(5): 2026-2040, 2023 09.
Article in English | MEDLINE | ID: mdl-36880409

ABSTRACT

The black nectar produced by Melianthus flowers is thought to serve as a visual attractant to bird pollinators, but the chemical identity and synthesis of the black pigment are unknown. A combination of analytical biochemistry, transcriptomics, proteomics, and enzyme assays was used to identify the pigment that gives Melianthus nectar its black color and how it is synthesized. Visual modeling of pollinators was also used to infer a potential function of the black coloration. High concentrations of ellagic acid and iron give the nectar its dark black color, which can be recapitulated through synthetic solutions containing only ellagic acid and iron(iii). The nectar also contains a peroxidase that oxidizes gallic acid to form ellagic acid. In vitro reactions containing the nectar peroxidase, gallic acid, hydrogen peroxide, and iron(iii) fully recreate the black color of the nectar. Visual modeling indicates that the black color is highly conspicuous to avian pollinators within the context of the flower. Melianthus nectar contains a natural analog of iron-gall ink, which humans have used since at least medieval times. This pigment is derived from an ellagic acid-Fe complex synthesized in the nectar and is likely involved in the attraction of passerine pollinators endemic to southern Africa.


Subject(s)
Magnoliopsida , Plant Nectar , Humans , Ellagic Acid , Ferric Compounds , Ink , Flowers , Peroxidases , Pollination
4.
Biol Lett ; 18(8): 20220099, 2022 08.
Article in English | MEDLINE | ID: mdl-35975631

ABSTRACT

Developmental plasticity can alter the expression of sexual signals in novel environments and is therefore thought to play an important role in promoting divergence. Sexual signals, however, are often multimodal and mate choice multivariate. Hence, to understand how developmental plasticity can facilitate divergence, we must assess plasticity across signal components and its cumulative impact on signalling. Here, we examine how developmental plasticity influences different components of cabbage white butterfly Pieris rapae multimodal signals, its effects on their signalling phenotypes and its implications for divergence. To do this, we reared P. rapae caterpillars under two different light environments (low-light and high-light) to simulate conditions experienced by P. rapae colonizing a novel light habitat. We then examined plasticity in both visual (wing coloration) and olfactory (pheromone abundance) components of male sexual signals. We found light environments influenced expression of both visual and olfactory components and resulted in a trade-off between signal modalities. The 'low-light' phenotype had duller wing colours but higher abundance of the pheromone, indole, whereas the 'high-light' phenotype had comparatively brighter wings but lower abundance of indole. These results show that by simultaneously altering expression of different signal components, developmental plasticity can produce multiple signalling phenotypes, which may catalyse divergence.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Indoles , Male , Phenotype , Pheromones , Wings, Animal
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35074876

ABSTRACT

Nearly 90% of flowering plants depend on animals for reproduction. One of the main rewards plants offer to pollinators for visitation is nectar. Nesocodon mauritianus (Campanulaceae) produces a blood-red nectar that has been proposed to serve as a visual attractant for pollinator visitation. Here, we show that the nectar's red color is derived from a previously undescribed alkaloid termed nesocodin. The first nectar produced is acidic and pale yellow in color, but slowly becomes alkaline before taking on its characteristic red color. Three enzymes secreted into the nectar are either necessary or sufficient for pigment production, including a carbonic anhydrase that increases nectar pH, an aryl-alcohol oxidase that produces a pigment precursor, and a ferritin-like catalase that protects the pigment from degradation by hydrogen peroxide. Our findings demonstrate how these three enzymatic activities allow for the condensation of sinapaldehyde and proline to form a pigment with a stable imine bond. We subsequently verified that synthetic nesocodin is indeed attractive to Phelsuma geckos, the most likely pollinators of Nesocodon We also identify nesocodin in the red nectar of the distantly related and hummingbird-visited Jaltomata herrerae and provide molecular evidence for convergent evolution of this trait. This work cumulatively identifies a convergently evolved trait in two vertebrate-pollinated species, suggesting that the red pigment is selectively favored and that only a limited number of compounds are likely to underlie this type of adaptation.


Subject(s)
Flowers/metabolism , Magnoliopsida/metabolism , Pigmentation/physiology , Plant Nectar/metabolism , Pollen/metabolism , Adaptation, Physiological/physiology , Animals , Birds/physiology , Lizards/physiology , Pollination/physiology , Reproduction/physiology
6.
Evol Appl ; 14(5): 1390-1402, 2021 May.
Article in English | MEDLINE | ID: mdl-34025774

ABSTRACT

Organismal tolerance to environmental pollution is thought to be constrained by fitness costs, where variants with higher survival in polluted environments have lower performance in nonpolluted environments. Yet, costs are not always detected in empirical studies. One hypothesis suggests that whether tolerance costs emerge depends on the degree of heterogeneity populations experience with respect to pollution exposure. For instance, in populations confined to local environments where pollution is persistent, selection may favour alleles that enhance pollution tolerance but reduce performance in nonpolluted environments (costs). However, in broadly distributed populations that undergo selection in both polluted and nonpolluted patches, costs should be eroded. Understanding tolerance costs in broadly distributed populations is relevant to management of invasive species, which are highly dispersive, wide ranging, and often colonize disturbed or polluted patches such as agricultural monocultures. Therefore, we conducted a case study quantifying costs of tolerance to zinc pollution (a common heavy metal pollutant) in wild cabbage white butterflies (Pieris rapae). This wide ranging, highly dispersive and invasive pest periodically encounters metal pollution by consuming plants in urban and agricultural settings. In contrast to expected costs of tolerance, we found that cabbage white families with greater zinc tolerance also produced more eggs and had higher reproductive effort under nonpolluted conditions. These results contribute to a more general hypothesis of why costs of pollution tolerance vary across studies: patchy selection with pollutants should erode costs and may favour genotypes that perform well under both polluted and nonpolluted conditions. This might partly explain why widely distributed invasive species are able to thrive in diverse, polluted and nonpolluted habitats.

7.
Proc Biol Sci ; 287(1940): 20202141, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33290678

ABSTRACT

Interspecific competition can occur when species are unable to distinguish between conspecific and heterospecific mates or competitors when they occur in sympatry. Selection in response to interspecific competition can lead to shifts in signalling traits-a process called agonistic character displacement. In two fan-throated lizard species-Sitana laticeps and Sarada darwini-females are morphologically indistinguishable and male agonistic signalling behaviour is similar. Consequently, in areas where these species overlap, males engage in interspecific aggressive interactions. To test whether interspecific male aggression between Si. laticeps and Sa. darwini results in agonistic character displacement, we quantified species recognition and signalling behaviour using staged encounter assays with both conspecifics and heterospecifics across sympatric and allopatric populations of both species. We found an asymmetric pattern, wherein males of Si. laticeps but not Sa. darwini showed differences in competitor recognition and agonistic signalling traits (morphology and behaviour) in sympatry compared with allopatry. This asymmetric shift in traits is probably due to differences in competitive abilities between species and can minimize competitive interactions in zones of sympatry. Overall, our results support agonistic character displacement, and highlight the role of asymmetric interspecific competition in driving shifts in social signals.


Subject(s)
Behavior, Animal/physiology , Lizards/physiology , Aggression , Animals , Biological Evolution , Ecology , Female , Male , Phenotype , Reproduction , Species Specificity , Sympatry
8.
Am Nat ; 195(3): 485-503, 2020 03.
Article in English | MEDLINE | ID: mdl-32097036

ABSTRACT

Organisms encounter a wide range of toxic compounds in their environments, from chemicals that serve anticonsumption or anticompetition functions to pollutants and pesticides. Although we understand many detoxification mechanisms that allow organisms to consume toxins typical of their diet, we know little about why organisms vary in their ability to tolerate entirely novel toxins. We tested whether variation in generalized stress responses, such as antioxidant pathways, may underlie variation in reactions to novel toxins and, if so, their associated costs. We used an artificial diet to present cabbage white butterfly caterpillars (Pieris rapae) with plant material containing toxins not experienced in their evolutionary history. Families that maintained high performance (e.g., high survival, fast development time, large body size) on diets containing one novel toxic plant also performed well when exposed to two other novel toxic plants, consistent with a generalized response. Variation in constitutive (but not induced) expression of genes involved in oxidative stress responses was positively related to performance on the novel diets. While we did not detect reproductive trade-offs of this generalized response, there was a tendency to have less melanin investment in the wings, consistent with the role of melanin in oxidative stress responses. Taken together, our results support the hypothesis that variation in generalized stress responses, such as genes involved in oxidative stress responses, may explain the variation in tolerance to entirely novel toxins and may facilitate colonization of novel hosts and environments.


Subject(s)
Aristolochia/chemistry , Butterflies/physiology , Passiflora/chemistry , Toxins, Biological/metabolism , Tussilago/chemistry , Animals , Biological Evolution , Butterflies/genetics , Butterflies/growth & development , Larva/genetics , Larva/growth & development , Larva/physiology
9.
Nat Ecol Evol ; 2(12): 1854-1858, 2018 12.
Article in English | MEDLINE | ID: mdl-30397304

ABSTRACT

Wind farms are a cleaner alternative to fossil fuels for mitigating the effects of climate change, but they also have complex ecological consequences. In the biodiversity hotspot of the Western Ghats in India, we find that wind farms reduce the abundance and activity of predatory birds (for example, Buteo, Butastur and Elanus species), which consequently increases the density of lizards, Sarada superba. The cascading effects of wind turbines on lizards include changes in behaviour, physiology and morphology that reflect a combination of predator release and density-dependent competition. By adding an effective trophic level to the top of food webs, we find that wind farms have emerging impacts that are greatly underestimated. There is thus a strong need for an ecosystem-wide view when aligning green-energy goals with environment protection.


Subject(s)
Conservation of Natural Resources , Food Chain , Renewable Energy/adverse effects , Animals , Biodiversity , Ecosystem , Falconiformes , India , Lizards , Population Density , Wind
10.
BMC Ecol ; 17(1): 10, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28245824

ABSTRACT

BACKGROUND: At high densities, terrestrial and marine species often employ alternate reproductive tactics (ARTs) to maximize reproductive benefits. We describe ARTs in a high-density and unfished spawning aggregation of the squaretail grouper (Plectropomus areolatus) in Lakshadweep, India. RESULTS: As previously reported for this species, territorial males engage in pair-courtship, which is associated with a pair-spawning tactic. Here, we document a previously unreported school-courtship tactic; where territorial males court multiple females in mid-water schools, which appears to culminate in a unique 'school-spawning' tactic. Courtship tactics were conditional on body size, local mate density and habitat, likely associated with changing trade-offs between potential mating opportunities and intra-sexual competition. Counter-intuitively, the aggregation showed a habitat-specific inverse size-assortment: large males courted small females on the reef slope while small males courted equal-sized or larger females on the shelf. These patterns remained stable across two years of observation at high, unfished densities. CONCLUSIONS: These unique density-dependent behaviours may disappear from this aggregation as overall densities decline due to increasing commercial fishing pressure, with potentially large consequences for demographics and fitness.


Subject(s)
Fishes/physiology , Reproduction , Animals , Courtship , Female , Male , Sexual Behavior, Animal
11.
C R Biol ; 337(6): 399-404, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24961560

ABSTRACT

A new high-elevation scorpion species of the genus Scorpiops is described from the Indian state of Himachal Pradesh. Scorpiops spitiensis sp. nov. is the second highest-elevation scorpion species in Asia and the first one from India occurring at elevations above 4200 m. The new species closely resembles Scorpiops petersii, but it can be distinguished from it based on a suit of characters, one of which is the presence of 16 trichobothria on the external aspect of the patella, which is unique to the new species.


Subject(s)
Scorpions/physiology , Altitude , Animals , Classification , Environment , Extremities/anatomy & histology , India , Scorpions/anatomy & histology , Scorpions/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...