Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Death Dis ; 15(5): 370, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806454

ABSTRACT

In ovarian tumors, the omental microenvironment profoundly influences the behavior of cancer cells and sustains the acquisition of stem-like traits, with major impacts on tumor aggressiveness and relapse. Here, we leverage a patient-derived platform of organotypic cultures to study the crosstalk between the tumor microenvironment and ovarian cancer stem cells. We discovered that the pro-tumorigenic transcription factor FOXM1 is specifically induced by the microenvironment in ovarian cancer stem cells, through activation of FAK/YAP signaling. The microenvironment-induced FOXM1 sustains stemness, and its inactivation reduces cancer stem cells survival in the omental niche and enhances their response to the PARP inhibitor Olaparib. By unveiling the novel role of FOXM1 in ovarian cancer stemness, our findings highlight patient-derived organotypic co-cultures as a powerful tool to capture clinically relevant mechanisms of the microenvironment/cancer stem cells crosstalk, contributing to the identification of tumor vulnerabilities.


Subject(s)
Forkhead Box Protein M1 , Neoplastic Stem Cells , Ovarian Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , YAP-Signaling Proteins/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects , Animals , Phthalazines/pharmacology , Piperazines/pharmacology
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769158

ABSTRACT

Despite the efforts made in recent decades, glioblastoma is still the deadliest primary brain cancer without cure. The potential role in tumour maintenance and progression of the peritumoural brain zone (PBZ), the apparently normal area surrounding the tumour, has emerged. Little is known about this area due to a lack of common definition and due to difficult sampling related to the functional role of peritumoural healthy brain. The aim of this work was to better characterize the PBZ and to identify genes that may have role in its malignant transformation. Starting from our previous study on the comparison of the genomic profiles of matched tumour core and PBZ biopsies, we selected CDK4 and EXT2 as putative malignant drivers of PBZ. The gene expression analysis confirmed their over-expression in PBZ, similarly to what happens in low-grade glioma and glioblastoma, and CDK4 high levels seem to negatively influence patient overall survival. The prognostic role of CDK4 and EXT2 was further confirmed by analysing the TCGA cohort and bioinformatics prediction on their gene networks and protein-protein interactions. These preliminary data constitute a good premise for future investigations on the possible role of CDK4 and EXT2 in the malignant transformation of PBZ.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/metabolism , Brain Neoplasms/metabolism , Brain/metabolism , Glioma/metabolism , Gene Expression Profiling , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism
3.
Biology (Basel) ; 10(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34827152

ABSTRACT

Glioblastoma is an extremely heterogeneous disease. Treatment failure and tumor recurrence primarily reflect the presence in the tumor core (TC) of the glioma stem cells (GSCs), and secondly the contribution, still to be defined, of the peritumoral brain zone (PBZ). Using the array-CGH platform, we deepened the genomic knowledge about the different components of GBM and we identified new specific biomarkers useful for new therapies. We firstly investigated the genomic profile of 20 TCs of GBM; then, for 14 cases and 7 cases, respectively, we compared these genomic profiles with those of the related GSC cultures and PBZ biopsies. The analysis on 20 TCs confirmed the intertumoral heterogeneity and a high percentage of copy number alterations (CNAs) in GBM canonical pathways. Comparing the genomic profiles of 14 TC-GSC pairs, we evidenced a robust similarity among the two samples of each patient. The shared imbalanced genes are related to the development and progression of cancer and in metabolic pathways, as shown by bioinformatic analysis using DAVID. Finally, the comparison between 7 TC-PBZ pairs leads to the identification of PBZ-unique alterations that require further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL