Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Transbound Emerg Dis ; 64(1): 226-236, 2017 Feb.
Article in English | MEDLINE | ID: mdl-25944444

ABSTRACT

In experiments to study the sensitivity of ground squirrels (Marmota bobak) to monkeypox virus (MPXV) at intranasal challenge, expressed pox-like clinical symptoms (hyperthermia, lymphadenitis, skin rash all over the body and mucous membranes and others) were observed 7-9 days post-infection. The 50% infective dose (ID50 ) of MPXV for these marmots determined by the presence of clinical signs of the disease was 2.2 log10 PFU. Some diseased marmots (about 40%) died 13-22 days post-infection, and the mortality rate was weakly dependent on MPXV infective dose. Lungs with trachea were primary target organs of marmots challenged intranasally (with ~30 ID50 ). The pathogen got to secondary target organs of the animals mainly via the lymphatic way (with replication in bifurcation lymph nodes). Lungs with trachea, nasal mucosa and skin were the organs where the maximum MPXV amounts accumulated in these animals. Evidences of the pathogen presence and replication were revealed in these and subcutaneously infected marmots in the traditional primary target cells for MPXV (macrophages and respiratory tract epitheliocytes), as well as in some other cells (endotheliocytes, plasmocytes, fibroblasts, reticular and smooth muscle cells). Our use of this animal species to assess the antiviral efficacy of some drugs demonstrated the agreement of the obtained results with those described in scientific literature, which opens up the prospects of using marmots as animal models for monkeypox to develop therapeutic and preventive anti-smallpox drugs.


Subject(s)
Antiviral Agents/adverse effects , Marmota , Monkeypox virus/drug effects , Mpox (monkeypox)/veterinary , Administration, Intranasal/veterinary , Animals , Disease Models, Animal , Female , Male , Mpox (monkeypox)/drug therapy
2.
Vopr Virusol ; 61(2): 69-73, 2016.
Article in Russian | MEDLINE | ID: mdl-27451498

ABSTRACT

Studies of the primary cultures of granulocytes, mononuclear, and monocyte-macrophage cells derived from human blood were performed using variola virus (VARV) in the doses of 0.001-0.021 PFU/cell (plaques-forming units per cell). Positive dynamics of the virus accumulation was observed only in the monocyte-macrophages with maximum values of virus concentration (5.0-5.5 Ig PFU/ml) mainly within six days after the infection. The fact of VARV replication in the monocyte-macrophages was confirmed by the data of electron microscopy. At the same time, virus vaccines when tested in doses 3.3 and 4.2 Ig PFU/ml did not show the ability to reproduce in these human cells. The people sensitivity to VARV as assessed from the data obtained on human monocyte-macrophages corresponded to -1 PFU (taking into account the smooth interaction of the virus in the body to the cells of this type), which is consistent to previously found theoretical data on the virus sensitivity. The human susceptibility to VARV assessed experimentally can be used to predict the adequacy of developed smallpox models (in vivo) based on susceptible animals. This is necessary for reliable assessment of the efficiency of development of drugs for treatment and prophylaxis of the smallpox.


Subject(s)
Macrophages/virology , Smallpox/prevention & control , Variola virus/physiology , Virion/growth & development , Adult , Animals , Antibodies, Viral/blood , Granulocytes/immunology , Humans , Macrophages/ultrastructure , Male , Microscopy, Electron , Organ Specificity , Primary Cell Culture , Smallpox/blood , Smallpox/immunology , Smallpox/virology , Smallpox Vaccine/pharmacology , Variola virus/ultrastructure , Virion/ultrastructure , Virus Replication
3.
Vopr Virusol ; 61(2): 79-84, 2016.
Article in Russian | MEDLINE | ID: mdl-27451500

ABSTRACT

Mice of the ICR outbred population were infected intranasally (i/n) with the variola virus (VARV, strain Ind-3a). Clinical signs of the disease did not appear even at the maximum possible dose of the virus 5.2 lg PFU/head (plaque-forming units per head). In this case, 50% infective dose (ID50) of VARV estimated by the presence or absence of the virus in the lungs three days after infection (p.i.) was equal to 2.7 ± 0.4 lg PFU/head. Taking into account the 10% application of the virus in the lungs during the intranasal infection of the mice, it was adequate to 1.7 lg PFU/lungs. This indicates a high infectivity of the VARV for mice comparable to its infectivity for humans. After the i/n infection of mice with the VARV at a dose 30 ID50/ head the highest concentration of the virus detected in the lungs (4.9 ± 0.0 lg PFU/ml of homogenate) and in nasal cavity tissues (4.8 ± 0.0 lg PFU/ml) were observed. The pathomorphological changes in the respiratory organs of the mice infected with the VARV appeared at 3-5 days p.i., and the VARV reproduction noted in the epithelial cells and macrophages were noticed. When the preparations ST-246 and NIOCH-14 were administered orally at a dose of 60 µg/g of mouse weight up to one day before infection, after 2 hours, 1 and 2 days p.i., the VARV reproduction in the lungs after 3 days p.i. decreased by an order of magnitude. Thus, outbred ICR mice infected with the VARV can be used as a laboratory model of the smallpox when evaluating the therapeutic and prophylactic efficacy of the antismallpox drugs.


Subject(s)
Alkenes/pharmacology , Antiviral Agents/pharmacology , Benzamides/pharmacology , Hydrazines/pharmacology , Isoindoles/pharmacology , Smallpox/drug therapy , Variola virus/drug effects , Administration, Intranasal , Animals , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial Cells/virology , Humans , Lung/drug effects , Lung/pathology , Lung/virology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/pathology , Macrophages, Alveolar/virology , Mice , Mice, Inbred ICR , Smallpox/pathology , Smallpox/virology , Variola virus/physiology , Viral Load/drug effects , Virus Replication/drug effects
4.
Transbound Emerg Dis ; 63(5): e419-30, 2016 Oct.
Article in English | MEDLINE | ID: mdl-25597343

ABSTRACT

As a result of the conducted experimental studies on intranasal challenge of ICR mice, rabbits and miniature pigs (even in the maximum variant) with the doses of 4.0-5.5 lg PFU of monkeypox virus (MPXV), some clinical signs such as purulent conjunctivitis, blepharitis and ruffled fur were found only in mice. The 50% infective dose (C ID50 ) of MPXV for these animals estimated by the presence of external clinical signs was 4.8 lg PFU, and L ID50 estimated by the virus presence in the lungs of mice 7 days post-infection taking into account its 10% application in the animal respiratory tract was 1.4 lg PFU. When studying the dynamics of MPXV propagation in mice challenged intranasally with 25 L ID50 of MPXV, the maximum pathogen accumulation was revealed in nasal cavity, lungs and brain: 5.7 ± 0.1, 5.5 ± 0.1 and 5.3 ± 0.3 lg PFU/ml, respectively. The pathomorphological examination of these animals revealed the presence and replication of the pathogen in the traditional primary target cells for MPXV (mononuclear phagocyte system cells and respiratory tract epitheliocytes) as well as in some other types of cells (endothelial cells, reticular cells, connective tissue cells). Our use of these animals to assess the antiviral efficacy of some drugs demonstrated the agreement of the results (a significant positive effect of NIOCH-14 and ST-246) with those described in scientific literature, which opens up the prospects of using ICR mice as animal models for monkeypox to develop preventive antismallpox drugs.


Subject(s)
Mice, Inbred ICR/virology , Monkeypox virus , Mpox (monkeypox)/veterinary , Animals , Antiviral Agents/pharmacology , Disease Models, Animal , Disease Susceptibility/veterinary , Mpox (monkeypox)/drug therapy
5.
Vopr Virusol ; 60(6): 37-41, 2015.
Article in Russian | MEDLINE | ID: mdl-27024916

ABSTRACT

In experimental study the sensitivity of the Marmota bobak species to the monkeypox virus (MPXV) with the intranasal (i/n) infection was tested. It was demonstrated that 50% of the infective dose (ID50) of the MPXV on external clinical signs of the disease was 2.2 Ig plaque forming units (PFU). The percentage of the marmot mortality is slightly dependent on the infecting dose of the MPXV, therefore it is not possible to correctly determine the value of 50 % fatal dose (FD50) for these animals. The most pronounced external clinical signs of the disease were obtained in the marmots: pox-like skin rash throughout the surface of the body and mucous membranes, purulent discharge from the nose, lymphadenitis, discoordination, tremor of the extremities, fever, increased aggression, and ruffled fur. In the course of experiments intended to determine the dynamics of the accumulation of the MPXV in various organs, tissues, and blood serum of marmot infected i/n with dose of 3.7 Ig PFU, it was found that the trachea, lungs, and the bifurcation lymph nodes are the primary target organs. The trachea, lungs, nasal mucosa membrane, and skin are the organs with maximal virus replication recorded at 5, 7, 9, and 12 days after the infection. The transfer of the MPXV into the secondary target organs (nasal mucosa membrane, brain, spleen, duodenum, adrenal glands, and skin) was carried out in marmots with lymphogenic and hematogenic ways of the dissemination of the infection.


Subject(s)
Monkeypox virus/pathogenicity , Mpox (monkeypox)/pathology , Mpox (monkeypox)/virology , Virus Replication/physiology , Administration, Intranasal , Animals , Female , Lung/pathology , Lung/virology , Lymph Nodes/pathology , Lymph Nodes/virology , Male , Marmota , Mpox (monkeypox)/mortality , Monkeypox virus/physiology , Nasal Mucosa/pathology , Nasal Mucosa/virology , Skin/pathology , Skin/virology , Spleen/pathology , Spleen/virology , Survival Analysis , Trachea/pathology , Trachea/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...