Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(21): 24734-24746, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34019366

ABSTRACT

Silicon-based anode fabrication with nanoscale structuration improves the energy density and life cycle of Li-ion batteries. As-synthesized silicon (Si) nanowires (NWs) or nanoparticles (NPs) directly on the current collector represent a credible alternative to conventional graphite anodes. However, the operating potentials of these electrodes are below the electrochemical stability window of all electrolytes used in commercial Li-ion systems. During the first charging phase of the cell, partial decomposition of the electrolyte takes place, which leads to the formation of a layer at the surface of the electrode, called solid electrolyte interphase (SEI). A stable and continuous SEI layer formation is a critical factor to achieve reliable lifetime stability of the battery. Once formed, the SEI acts as a passivation layer that minimizes further degradation of the electrolyte during cycling, while allowing lithium-ion diffusion with their subsequent insertion into the active material and ensuring reversible operation of the electrode. However, one of the major issues requiring deeper investigation is the assessment of the morphological extension of the SEI layer into the active material, which is one of the main parameters affecting the anode performances. In the present study, we use electron tomography with a low electron dose to retrieve three-dimensional information on the SEI layer formation and its stability around SiNWs and SiNPs. The possible mechanisms of SEI evolution could be inferred from the interpretation and analysis of the reconstructed volumes. Significant volume variations in the SiNW and an inhomogeneous distribution of the SEI layer around the NWs are observed during cycling and provide insights into the potential mechanism leading to the generally reported SiNW anode capacity fading. By contrast, analysis of the reconstructed SiNPs' volume for a sample undergoing one lithiation-delithiation cycle shows that the SEI remains homogeneously distributed around the NPs that retain their spherical morphology and points to the potential benefit of such nanoscale Si anode materials to improve their cycling lifetime.

2.
ACS Appl Mater Interfaces ; 12(33): 37464-37469, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32706240

ABSTRACT

Solar cells built with arrays of semiconductor wires have been studied for several years. They present some potential advantages over their bulk counterparts, such as (much) less use of semiconductor material, as well as improved light absorption properties. Most wire-based solar cells are fabricated with arrays of semiconductor p-n junctions, either radial or axial. Here, using a newly developed random connection process based on nickel silicide nanowires, we have built Schottky-type solar cells on interdigitated base and emitter coplanar electrodes that reach an efficiency of 6.5% when only 64% of the footprint area of the device is covered with p-type Si wire light-absorbers. To the best of our knowledge, this is the best efficiency reported so far for a Schottky-type wire-based solar cell; a simple extrapolation of the surface area suggests that an efficiency of more than 10% can be reached, which is comparable to that of single-junction hydrogenated amorphous Si cells. We also compare the Schottky-type cell with a "control" p-i-n one using the same device layout and the same nickel silicide nanowire random connection process: the efficiency of the p-i-n cell is higher (∼8%) but this is due to a higher VOC, the short-circuit current density (ISC) being very similar in both cases, close to 20 mA/cm2. The maximum temperature reached throughout the fabrication process of the cells (whether Schottky-type or p-i-n) is 550 °C, corresponding to the growth of the crystalline Si wires. Altogether, the results presented here hold promises toward cheap photovoltaics based on the use of randomly organized and randomly connected Si wire arrays.

3.
Sci Rep ; 5: 7659, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25564245

ABSTRACT

Hollow carbon nanospheres/silicon/alumina (CNS/Si/Al2O3) core-shell films obtained by the deposition of Si and Al2O3 on hollow CNS interconnected films are used as the anode materials for lithium-ion batteries. The hollow CNS film acts as a three dimensional conductive substrate and provides void space for silicon volume expansion during electrochemical cycling. The Al2O3 thin layer is beneficial to the reduction of solid-electrolyte interphase (SEI) formation. Moreover, as-designed structure holds the robust surface-to-surface contact between Si and CNSs, which facilitates the fast electron transport. As a consequence, the electrode exhibits high specific capacity and remarkable capacity retention simultaneously: 1560 mA h g(-1) after 100 cycles at a current density of 1 A g(-1) with the capacity retention of 85% and an average decay rate of 0.16% per cycle. The superior battery properties are further confirmed by cyclic voltammetry (CV) and impedance measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...