Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Arrhythm Electrophysiol ; 4(1): 94-102, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21156770

ABSTRACT

BACKGROUND: The acetylcholine-activated K(+) current (I(K,ACh)) is a novel candidate for atrial-specific antiarrhythmic therapy. The present study investigates the involvement of I(K,ACh) in atrial fibrillation (AF) using NTC-801, a novel potent and selective I(K,ACh) blocker. METHODS AND RESULTS: The effects of NTC-801, substituted 4-(aralkylamino)-2,2-dimethyl-3,4-dihydro-2H-benzopyran-3-ol, on I(K,ACh) and other cardiac ionic currents (I(Na), I(CaL), I(to), I(Kur), I(Kr), I(Ks), I(Kl), I(KATP), and I(f)) and on atrial and ventricular action potentials were examined in vitro. NTC-801 potently inhibited carbachol-induced I(K,ACh) in guinea pig atrial cells and the GIRK1/4 current in Xenopus oocytes with IC(50) values of 5.7 and 0.70 nmol/L, respectively. NTC-801 selectively inhibited I(K,ACh) >1000-fold over other cardiac ionic currents. NTC-801 (10 to 100 nmol/L) reversed the action potential duration (APD(90)) shortened by carbachol or adenosine in atrial cells, whereas it did not affect APD(90) at 100 nmol/L in ventricular cells. Antiarrhythmic effects of NTC-801 were evaluated in 3 AF models in vivo. NTC-801 significantly prolonged atrial effective refractory period without affecting ventricular effective refractory period under vagal nerve stimulation. NTC-801 dose-dependently converted AF to normal sinus rhythm in both vagal nerve stimulation-induced (0.3 to 3 µg · kg(-1) · min(-1) IV) and aconitine-induced (0.01 to 0.1 mg/kg IV) models. In a rapid atrial pacing model, NTC-801 (3 µg · kg(-1) · min(-1) IV) significantly decreased AF inducibility with a prolonged atrial effective refractory period that was frequency-independent. CONCLUSIONS: A selective I(K,ACh) blockade induced by NTC-801 exerted anti-AF effects mediated by atrial-selective effective refractory period prolongation. These findings suggest that I(K,ACh) may be important in the development and maintenance of AF.


Subject(s)
Acetylcholine , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Potassium Channel Blockers/therapeutic use , Action Potentials/drug effects , Action Potentials/physiology , Animals , Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/physiopathology , Benzopyrans/pharmacology , Cells, Cultured , Cricetinae , Cricetulus , Dogs , Dose-Response Relationship, Drug , Female , Guinea Pigs , HEK293 Cells , Heart Atria/cytology , Heart Atria/drug effects , Heart Atria/physiopathology , Humans , Models, Animal , Oocytes/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels/drug effects , Potassium Channels/physiology , Vagus Nerve/drug effects , Vagus Nerve/physiopathology , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...