Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 46(10): 1199-205, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9322807

ABSTRACT

Type II diabetic patients and others with insulin resistance are at risk for development of hypertension characterized by elevated peripheral vascular resistance and loss of insulin's normal vasodilating activity. Oral antidiabetic drugs have recently been recognized to have disparate effects on arterial pressure in such patients and in related rodent models. Sulfonylureas (e.g., glyburide), which stimulate insulin secretion, have been reported either to increase or not to affect arterial pressure, whereas nonsulfonylurea agents with insulin-sensitizing properties, the biguanide metformin and various thiazolidinediones (eg, pioglitazone), have been reported to decrease arterial pressure in humans and rodents. To help elucidate these disparate effects, we investigated these agents for direct actions on arterial vascular contractility and its sensitivity to insulin. Preincubation of intact rat tail arterial tissue rings for 2 hours with known therapeutically effective antidiabetic concentrations of metformin and pioglitazone significantly attenuated the force of contractions produced by either potassium (membrane depolarization) or norepinephrine ([NE] adrenergic receptor activation). Glyburide did not influence these contractions. Preincubation with metformin also induced an attenuating (vasodilating-like) action of insulin on arterial tissue rings contracted by potassium. Conversely, glyburide induced an accentuating action of insulin on potassium-mediated contractions. These results are consistent with measures of vascular function obtained in the past after oral administration of the drugs, which suggested but did not prove that they may exert direct effects on arterial vascular contractility. Thus, metformin and thiazolidinediones may decrease arterial pressure partly by direct vasorelaxant mechanisms, with metformin having an additional effect of inducing vasorelaxation by insulin. In contrast, sulfonylureas may directly induce a paradoxical vasoconstrictor response to insulin.


Subject(s)
Arteries/physiology , Hypoglycemic Agents/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/physiology , Thiazolidinediones , Animals , Arteries/drug effects , Blood Pressure/drug effects , Glyburide/pharmacology , Humans , In Vitro Techniques , Insulin/pharmacology , Male , Metformin/pharmacology , Muscle, Smooth, Vascular/drug effects , Pioglitazone , Potassium Chloride/pharmacology , Rats , Rats, Wistar , Tail/blood supply , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...