Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 82(3): 583-588, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30799622

ABSTRACT

The taccalonolides are a class of microtubule stabilizers that circumvent clinically relevant forms of drug resistance due to their unique mechanism of microtubule stabilization imparted by the covalent binding of the C-22-C-23 epoxide moiety to tubulin. A taccalonolide (8) with a fluorescein group attached with a linker at C-6 was generated, and biochemical and cell-based assays showed that it bound directly to tubulin and stabilized microtubules. This pharmacological probe has allowed, for the first time, a direct visualization of a taccalonolide binding to microtubules, verifying their cellular binding site. This C-6-modified taccalonolide showed potency comparable to the untagged compound in biochemical experiments; however, its potency was lower in cellular assays, presumably due to decreased cellular permeability. These studies provide a valuable tool to facilitate the further understanding of taccalonolide pharmacology and demonstrate that C-6 is a promising site for a linker to be added to this novel class of microtubule stabilizers for targeted drug delivery.


Subject(s)
Microtubules/drug effects , Steroids/chemistry , Steroids/pharmacology , Tubulin Modulators/pharmacology , Cell Proliferation/drug effects , HeLa Cells , Humans , Molecular Structure , Structure-Activity Relationship , Tubulin Modulators/chemistry
2.
J Nat Prod ; 81(3): 579-593, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29360362

ABSTRACT

The taccalonolides are a unique class of microtubule stabilizers isolated from Tacca spp. that have efficacy against drug-resistant tumors. Our previous studies have demonstrated that a C-15 acetoxy taccalonolide, AF, has superior in vivo antitumor efficacy compared to AJ, which bears a C-15 hydroxy group. With the goal of further improving the in vivo efficacy of this class of compounds, we semisynthesized and tested the biological activities of 28 new taccalonolides with monosubstitutions at C-7 or C-15 or disubstitutions at C-7 and C-25, covering a comprehensive range of substituents from formic acid to anthraquinone-2-carbonyl chloride. The resulting taccalonolide analogues with diverse C-7/C-15/C-25 modifications exhibited IC50 values from 2.4 nM to >20 µM, allowing for extensive in vitro structure-activity evaluations. This semisynthetic strategy was unable to provide a taccalonolide with improved therapeutic window due to hydrolysis of substituents at C-7 or C-15 regardless of size or steric bulk. However, two of the most potent new taccalonolides, bearing isovalerate modifications at C-7 or C-15, demonstrated potent and highly persistent antitumor activity in a drug-resistant xenograft model when administered intratumorally. This study demonstrates that targeted delivery of the taccalonolides to the tumor could be an effective, long-lasting approach to treat drug-resistant tumors.


Subject(s)
Dioscoreaceae/chemistry , Microtubules/drug effects , Steroids/chemistry , Steroids/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Female , HeLa Cells , Humans , Mice , Mice, Nude , Microtubules/chemistry , Steroids/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...