ABSTRACT
Amaranth is a promising staple food that produces seeds with excellent nutritional quality. Although cultivated species intended for grain production have interesting agronomic traits, relatively little is known about wild species, which can prosper in diverse environments and could be a rich genetic source for crop improvement. This work focuses on the proteomic comparison between the seeds of wild and cultivated amaranth species using polarity-based protein extraction and two-dimensional gel electrophoresis. Differentially accumulated proteins (DAPs) showed changes in granule-bound starch synthases and a wide range of 11S globulin isoforms. The electrophoretic profile of these proteins suggests that they may contain significant phosphorylation as post-translational modifications (PTMs), which were confirmed via immunodetection. These PTMs may impact the physicochemical functionality of storage proteins, with potential implications for seed agronomic traits and food system applications. Low-abundant DAPs with highly variable accumulation patterns are also discussed; these were involved in diverse molecular processes, such as genic regulation, lipid storage, and stress response.
ABSTRACT
Confronting environments with low relative humidity is one of the main challenges faced by insects with expanding distribution ranges. Anastrepha ludens (the Mexican fruit fly) has evolved to cope with the variable conditions encountered during its lifetime, which allows it to colonise a wide range of environments. However, our understanding of the mechanisms underpinning the ability of this species to confront environments with low relative humidity is incomplete. In this sense, omic approaches such as transcriptomics can be helpful for advancing our knowledge on how this species copes with desiccation stress. Considering this, in this study, we performed transcriptomic analyses to compare the molecular responses of laboratory-reared A. ludens exposed and unexposed to desiccation. Data from the transcriptome analyses indicated that the responses to desiccation are shared by both sexes. We identified the up-regulation of transcripts encoding proteins involved in lipid metabolism and membrane remodelling, as well as proteases and cuticular proteins. Our results provide a framework for understanding the response to desiccation stress in one of the most invasive fruit fly species in the world.
Subject(s)
Desiccation , Tephritidae , Animals , Tephritidae/genetics , Tephritidae/physiology , Female , Male , Transcriptome , Gene Expression Profiling , Stress, PhysiologicalABSTRACT
Alphabaculoviruses are lethal dsDNA viruses of Lepidoptera that have high genetic diversity and are transmitted in aggregates within proteinaceous occlusion bodies. This mode of transmission has implications for their efficacy as biological insecticides. A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV-NIC) comprising nine genotypic variants has been the subject of considerable study due to the influence of variant interactions on the insecticidal properties of mixed-variant occlusion bodies. As part of a systematic study on the replication and transmission of variant mixtures, a tool for the accurate quantification of a selection of genotypic variants was developed based on the quantitative PCR technique (qPCR). First, primer pairs were designed around a region of high variability in four variants named SfNic-A, SfNic-B, SfNic-C and SfNic-E to produce amplicons of 103-150 bp. Then, using cloned purified amplicons as standards, amplification was demonstrated over a dynamic range of 108-101 copies of each target. The assay was efficient (mean ± SD: 98.5 ± 0.8%), reproducible, as shown by low inter- and intra-assay coefficients of variation (<5%), and specific to the target variants (99.7-100% specificity across variants). The quantification method was validated on mixtures of genotype-specific amplicons and demonstrated accurate quantification. Finally, mixtures of the four variants were quantified based on mixtures of budded virions and mixtures of DNA extracted from occlusion-derived virions. In both cases, mixed-variant preparations compared favorably to total viral genome numbers by quantification of the polyhedrin (polh) gene that is present in all variants. This technique should prove invaluable in elucidating the influence of variant diversity on the transmission and insecticidal characteristics of this pathogen.
Subject(s)
Genetic Variation , Genotype , Nucleopolyhedroviruses , Real-Time Polymerase Chain Reaction , Spodoptera , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/classification , Nucleopolyhedroviruses/isolation & purification , Animals , Spodoptera/virology , Real-Time Polymerase Chain Reaction/methods , DNA, Viral/geneticsABSTRACT
Cocos nucifera L. is a crop grown in the humid tropics. It is grouped into two classes of varieties: dwarf and tall; regardless of the variety, the endosperm of the coconut accumulates carbohydrates in the early stages of maturation and fatty acids in the later stages, although the biochemical factors that determine such behavior remain unknown. We used tandem mass tagging with synchronous precursor selection (TMT-SPS-MS3) to analyze the proteomes of solid endosperms from Yucatan green dwarf (YGD) and Mexican pacific tall (MPT) coconut cultivars. The analysis was conducted at immature, intermediate, and mature development stages to better understand the regulation of carbohydrate and lipid metabolisms. Proteomic analyses showed 244 proteins in YGD and 347 in MPT; from these, 155 proteins were shared between both cultivars. Furthermore, the proteomes related to glycolysis, photosynthesis, and gluconeogenesis, and those associated with the biosynthesis and elongation of fatty acids, were up-accumulated in the solid endosperm of MPT, while in YGD, they were down-accumulated. These results support that carbohydrate and fatty acid metabolisms differ among the developmental stages of the solid endosperm and between the dwarf and tall cultivars. This is the first proteomics study comparing different stages of maturity in two contrasting coconut cultivars and may help in understanding the maturity process in other palms.
Subject(s)
Cocos , Endosperm , Endosperm/metabolism , Cocos/metabolism , Fatty Acids/metabolism , Proteome/metabolism , Proteomics , Carbohydrates , Metabolic Networks and PathwaysABSTRACT
Proteomics is an essential tool to uncover the regulatory processes of fruit biology. In fruits with high proteolytic activity, the inhibition of endogenous proteases is key for successful protein extraction. In this chapter, we describe an efficient protocol for total protein extraction to deal with this inconvenience using pineapple pulp as an example. We corroborated the efficacy of our protein extraction protocols by carrying out nano LC-MS/MS analyses using a highly sensitive hybrid mass spectrometer. In doing so, we were able to identify over 3000 proteins in pineapple pulp. Our contribution paves the way for massive comparative proteomics scrutiny in pineapple fruits, as well as others plant tissues with high protease activity such as papaya, fig, and kiwi fruits.
Subject(s)
Ananas , Proteomics , Fruit/metabolism , Peptide Hydrolases , Plant Proteins/metabolism , Proteomics/methods , Tandem Mass SpectrometryABSTRACT
Rhipicephalus microplus is the most serious tick parasite for the livestock industry in tropical and subtropical regions. A cost-effective control method to manage the infestation of this parasite involves the use of chemicals such as ivermectin. However, massive overuse of ivermectin over recent decades has selected for ivermectin-resistant populations of R. microplus. Here, we carried out a comparative proteomic analysis of the midgut of ivermectin-susceptible versus ivermectin-resistant ticks using tandem mass tags coupled to synchronous precursor selection. In susceptible ticks, there was an over-representation of proteins associated with blood digestion and anticoagulation. In contrast, resistant ticks exhibited an over-accumulation of proteins involved in phase I and phase II of the detoxification metabolism, including cytochrome P450, glutathione-S-transferase, and ABC transporters, as well as many ribosomal and other translation-related proteins. This information provides new clues about the mechanisms of ivermectin resistance in R. microplus as well as suggesting potential novel molecular targets to cope with ivermectin-resistant populations of R. microplus. SIGNIFICANCE: Cattle farming is an important primary economic activity for food production all over the globe. However, this activity also has detrimental environmental impacts, including the overuse of ivermectin and other chemicals used to control parasite infestations. The overuse of ivermectin selected for parasites with resistance to this chemical, including tick species like R. microplus. There has been extensive to understand the mechanisms that mediate ivermectin resistance in arthropods, but many gaps remain for the full comprehension of this phenomenon. Understanding the biochemistry behind ivermectin resistance could provide new alternatives to fight these parasites. We therefore consider that determining the metabolic mechanisms involved in ivermectin resistance is of great relevance. The comparative proteomic analysis here reported shows the relevance of the active detoxifying metabolism in the midgut of resistant ticks, which may be key for the development of novel control methods.
Subject(s)
Cattle Diseases , Ixodidae , Rhipicephalus , Animals , Cattle , Cattle Diseases/parasitology , Glutathione Transferase/metabolism , Ivermectin/pharmacology , Proteome/metabolism , Proteomics , Rhipicephalus/metabolismABSTRACT
The public health crisis caused by the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in 2019 has drastically changed our lifestyle in virtually all contexts around the world. SARS-CoV-2 is mainly airborne, transmitted by the salivary droplets produced when infected people cough or sneeze. In addition, diarrhea symptoms and the detection of SARS-CoV-2 in feces suggest a fecal-oral route of contagion. Currently, the high demand for SARS-CoV-2 diagnosis has surpassed the availability of PCR and immunodetection probes and has prompted the development of other diagnostic alternatives. In this context, mass spectrometry (MS) represents a mature, robust alternative platform for detection of SARS-CoV-2 and other human viruses. This possibility has raised great interest worldwide. Therefore, it is time for the global application of MS as a feasible option for detecting SARS-CoV-2, not only in human fluids, but also in other matrices such as foods and wastewater. This review covers the most relevant established methods for MS-based SARS-CoV-2 detection and discusses the future application of these tools in different matrices. Significance: The Coronavirus Disease 2019 (COVID-19) pandemic highlighted the pros and cons of currently available PCR and immunodetection tools. The great concern over the infective potential of SARS-CoV-2 viral particles that can persist for several hours on different surfaces under various conditions further evidenced the need for reliable alternatives and high-throughput methods to meet the needs for mass detection of SARS-CoV-2. In this context, MS-based proteomics emerging from fundamental studies in life science can offer a robust option for SARS-CoV-2 detection in human fluids and other matrices. In addition, the substantial efforts towards detecting SARS-CoV-2 in clinal samples, position MS to support the detection of this virus in different matrices such as the surfaces of the packing food process, frozen foods, and wastewaters. Proteomics and mass spectrometry are, therefore, well positioned to play a role in the epidemiological control of COVID-19 and other future diseases. We are currently witnessing the opportunity to generate technologies to overcome prolonged pandemics for the first time in human history.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Mass Spectrometry , Polymerase Chain Reaction , SARS-CoV-2/geneticsABSTRACT
The effects of crude oil spills are an ongoing problem for wildlife and human health in both marine and freshwater aquatic environments. Bioassays of model organisms are a convenient way to assess the potential risks of the substances involved in oil spills. Zebrafish embryos (ZFE) are a useful to reach a fast and detailed description of the toxicity of the pollutants, including both the components of the crude oil itself and substances that are commonly used for crude oil spill mitigation (e.g. surfactants). Here, we evaluated the survival rate, as well as histological, morphological, and proteomic changes in ZFE exposed to Water Accumulated Fraction (WAF) of light crude oil and in mixture with Dioctyl Sulfosuccinate Sodium (DOSS, e.g. CEWAF: Chemically Enhanced WAF), a surfactant that is frequently used in chemical dispersant formulations. Furthermore, we compared the hydrocarbon concentration of WAF and CEWAF of the sublethal dilution. In histological, morphological, and gene expression variables, the ZFE exposed to WAF showed less changes than those exposed to CEWAF. Proteomic changes were more dramatic in ZFE exposed to WAF, with important alterations in spliceosomal and ribosomal proteins, as well as proteins related to eye and retinal photoreceptor development and heart function. We also found that the concentration of high molecular weight hydrocarbons in water was slighly higher in presence of DOSS, but the low molecular weight hydrocarbons concentration was higher in WAF. These results provide an important starting point for identifying useful crude-oil exposure biomarkers in fish species.
Subject(s)
Petroleum , Water Pollutants, Chemical , Animals , Petroleum/toxicity , Proteomics , Surface-Active Agents/toxicity , Water , Water Pollutants, Chemical/toxicity , ZebrafishABSTRACT
Dioctyl Sodium Sulfosuccinate (DOSS, CAS 577-11-7) is a chemical emulsifying surfactant that is widely used in the food and the cosmetic industry, and it is also the major component of the crude oil chemical dispersant Corexit™. Despite of its wide use, the studies related to its negative effect have been evaluated mainly in marine environments showing that DOSS is highly bioactive, extremely low volatile, and potential to persist in the environment longer than other dispersant components. Up to date, there is no available information of DOSS concentration in freshwater environments, little is known about its downstream fate after excretion and its effect on freshwater organisms. The objective of this study was to evaluate the effect of DOSS at different concentrations in embryos and adults of zebrafish Danio rerio in an acute-static bioassays of 96 h. The median lethal concentration in embryos was 33.3 mg/L. Malformations started to be observed at 10 mg/L. In adults, the gene expression analysis in gill tissues showed a deregulation in genes associated with the antioxidant system and the nucleotide excision repair mechanism. Additionally, Micronuclei (DNA damage) in erythrocytes, and fat degeneration in liver, hypertrophy and hyperplasia in gills, and hyaline drops in kidney tissues were also observed. In conclusion, the concentrations of DOSS evaluated here would be of health relevance to fish based on morphological alterations in embryos and changes in the gene expression profile, DNA damage and tissue impairment in adults.
Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Dioctyl Sulfosuccinic Acid/analysis , Dioctyl Sulfosuccinic Acid/chemistry , Sodium , Succinates , Surface-Active Agents/analysis , Surface-Active Agents/toxicity , Water Pollutants, Chemical/toxicityABSTRACT
In 2018 we evaluated at 48 h and 96 h, the gene expression profile of larvae of Limulus polyphemus exposed to 10% and 100% of water-accommodated fraction (WAF) of light crude oil (API 35), and 10% and 100% of a chemically enhanced WAF (CEWAF) with the dispersant Nokomis 3-F4® in a static-acute (96 h) bioassay. Alkanes and PAHs concentrations were higher in CEWAF than in WAF stock solutions. Under the proved conditions, the expression profile of genes associated to detoxification processes (glutathione S-transferase and glutathione peroxidase), stress (heat shock protein), innate immunity (tumor necrosis factor receptor-associated factor 4 traf4), cell death (apoptosis inhibitor 5) and DNA repairing (E3 ubiquitin protein ligase), showed a deregulation at 48 h followed by an upregulation at 96 h, with exception of glutathione peroxidase, heat shock protein and innate immunity that remained low in CEWAF. In conclusion, by using genes that have been proposed as biomarkers to pollutants exposure, L. polyphemus larvae showed an early activation of genes related to the immune system, antioxidant, heat shock and NER.
Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Gene Expression , Horseshoe Crabs , Larva , Petroleum/toxicity , Water , Water Pollutants, Chemical/toxicityABSTRACT
Psidium guajava (guava) exhibits a high content of biomolecules with nutraceutical properties. However, the biochemistry and molecular foundation of guava ripening is unknown. We performed comparative proteomics and metabolomics studies in different fruit tissues at two ripening stages to understand this process in white guava. Our results, suggest the positive contribution of ethylene and abscisic acid (ABA) signaling to the regulation of biochemical changes during guava ripening. We characterized the modulation of several metabolic pathways, including those of sugar and chlorophyll metabolism, abiotic and biotic stress responses, and biosynthesis of carotenoids and secondary metabolites, among others. In addition to ethylene and ABA, we also found a differential accumulation of other growth regulators such as brassinosteroids, cytokinin, methyl-jasmonate, gibberellins and proteins, and discuss their possible implications in the intricate biochemical network associated with guava ripening process. This integrative approach represents a global overview of the metabolic pathway dynamics during guava ripening.
Subject(s)
Psidium , Fruit/genetics , Gibberellins , Metabolomics , ProteomicsABSTRACT
We studied the microbiota of a highly polyphagous insect, Anastrepha ludens (Diptera: Tephritidae), developing in six of its hosts, including two ancestral (Casimiroa edulis and C. greggii), three exotic (Mangifera indica cv. Ataulfo, Prunus persica cv. Criollo, and Citrus x aurantium) and one occasional host (Capsicum pubescens cv. Manzano), that is only used when extreme drought conditions limit fruiting by the common hosts. One of the exotic hosts ("criollo" peach) is rife with polyphenols and the occasional host with capsaicinoids exerting high fitness costs on the larvae. We pursued the following questions: (1) How is the microbial composition of the larval food related to the composition of the larval and adult microbiota, and what does this tell us about transience and stability of this species' gut microbiota? (2) How does metamorphosis affect the adult microbiota? We surveyed the microbiota of the pulp of each host fruit, as well as the gut microbiota of larvae and adult flies and found that the gut of A. ludens larvae lacks a stable microbiota, since it was invariably associated with the composition of the pulp microbiota of the host plant species studied and was also different from the microbiota of adult flies indicating that metamorphosis filters out much of the microbiota present in larvae. The microbiota of adult males and females was similar between them, independent of host plant and was dominated by bacteria within the Enterobacteriaceae. We found that in the case of the "toxic" occasional host C. pubescens the microbiota is enriched in potentially deleterious genera that were much less abundant in the other hosts. In contrast, the pulp of the ancestral host C. edulis is enriched in several bacterial groups that can be beneficial for larval development. We also report for the first time the presence of bacteria within the Arcobacteraceae family in the gut microbiota of A. ludens stemming from C. edulis. Based on our findings, we conclude that changes in the food-associated microbiota dictate major changes in the larval microbiota, suggesting that most larval gut microbiota is originated from the food.
ABSTRACT
Crude oil is one of the most widespread pollutants released into the marine environment, and native species have provided useful information about the effect of crude oil pollution in marine ecosystems. We consider that the lined sole Achirus lineatus can be a useful monitor of the effect of crude oil in the Gulf of Mexico (GoM) because this flounder species has a wide distribution along the GoM, and its response to oil components is relevant. The objective of this study was to compare the transcriptomic changes in liver and gill of adults lined sole fish (Achirus lineatus) exposed to a sublethal acute concentration of water-accommodated fraction (WAF) of light crude oil for 48 h. RNA-Seq was performed to assess the transcriptional changes in both organs. A total of 1073 differentially expressed genes (DEGs) were detected in gills; 662 (61.69%) were upregulated, and 411 (38.30%) were downregulated whereas in liver, 515 DEGs; 306 (59.42%) were upregulated, and 209 (40.58%) were downregulated. Xenobiotic metabolism and redox metabolism, along with DNA repair mechanisms, were activated. The induction of hypoxia-regulated genes and the generalized regulation of multiple signaling pathways support the hypothesis that WAF exposition causes a hypoxia-like condition.
Subject(s)
Flounder , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Ecosystem , Gills/chemistry , Gulf of Mexico , Hypoxia , Liver/chemistry , Petroleum/toxicity , Transcriptome , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicityABSTRACT
Avocado is a nutritious and economically important fruit, generating significant income for exporter countries. Recently, by-products of this fruit such as seeds and peels, have raised interest in different industries. However, the biochemical features of the nutraceutical value of these tissues have not been analyzed using molecular approaches during the postharvest shelf life (PSL). We carried out comparative proteomics using tandem mass tagging (TMT) and synchronous-precursor selection (SPS)-MS3. We analyzed testa, cotyledon, and embryo axes from avocado seeds at detachment from the tree (unripe), and after five (breaker) and ten days (ripe) of PSL. We identified 1968 proteins, from which 933 were specific to the testa, 167 to the embryo axis, and 23 to the cotyledon. The testa had a more dynamic proteome than the other tissues, resembling similar stress responses to those observed in peel tissues, such as down-accumulation of translational machinery, cell wall catabolism and synthesis of secondary metabolites. In contrast, the up-accumulation of the biosynthesis of l-glutamine, L-isoleucine, and l-serine was observed in all tissues. Our study provides the basic biochemical and physiological features of avocado seed during PSL and demonstrates that avocado seed tissues could potentially be used as a costless source of high-value compounds. SIGNIFICANCE: Avocado seed as a fruit by-product is a source of different valuable molecules, including those with nutraceutical properties. During PSL, several biochemical and physiological modifications occur in this dispersal unit, which also includes the alteration of several key metabolites' content. However, the proteome profile associated with different metabolic pathways that regulate the inner content of seed metabolites has not been previously studied. Our tissue-specific proteomics TMT-SPS-MS3-based provides the first evidence of molecular and physiological changes in avocado tissues during PSL delivering fundamental knowledge of this organ. In this vein, the modulation of secondary metabolites, amino acid, and sugar metabolism of avocado tissues during PLS can encourage these by-products exploitation in multiple industries.
Subject(s)
Persea , Fruit , Proteome , Proteomics , SeedsABSTRACT
Crude oil spills have caused substantial impacts to aquatic ecosystems. Chemical dispersants are used to palliate the impact of oil spillages, but their use is polemic due to their additional potential toxic effect when mixed with oil-derived components. In this work, we used a 16S-based metagenomic approach to analyze the changes of the gut microbiota of adult zebrafish (Danio rerio) exposed to the water accommodated fraction (WAF) of a light crude oil (35° API gravity), and the chemically enhanced WAF (CEWAF), prepared with Nokomis 3-F4® dispersant. After 96 h of exposure, WAF induced an increase in the alpha and beta diversity, altering the relative abundance of Vibrio, Flavobacterium, and Novosphingobium. In contrast, CEWAF only caused an increase in the beta diversity, and an enrichment of the genus Pseudomona. Both treatments diminished the abundances of Aeromonas, Cetobacterium, Coxiella, Dinghuibacter, and Paucibacter. Moreover, the co-occurrence network among genera was more complex in WAF than in CEWAF, indicating a greater bacterial interaction in response to WAF. Our results indicate that short-term exposure to WAF and CEWAF can induce a dysbiosis in the gut microbiota of D. rerio, but these changes are specific in each treatment.
Subject(s)
Gastrointestinal Microbiome , Petroleum , Water Pollutants, Chemical , Animals , Ecosystem , Petroleum/toxicity , Water , Water Pollutants, Chemical/toxicity , ZebrafishABSTRACT
The spiny lobster Panulirus argus (Latreille, 1804) is currently affected by an unenveloped, icosahedral, DNA virus termed Panulirus argus virus 1 (PaV1), a virulent and pathogenic virus that produces a long-lasting infection that alters the physiology and behaviour of heavily infected lobsters. Gut-associated microbiota is crucial for lobster homeostasis and well-being, but pathogens could change microbiota composition affecting its function. In PaV1 infection, the changes of gut-associated microbiota are yet to be elucidated. In the present study, we used high-throughput 16S rRNA sequencing technology to compare the bacterial microbiota in intestines of healthy and heavily PaV1-infected male and female juveniles of spiny lobsters P. argus captured in Puerto Morelos Reef lagoon, Quintana Roo, Mexico. We found that basal gut-associated microbiota composition showed a sex-dependent bias, with females being enriched in amplicon sequence variants (ASVs) assigned to Sphingomonas, while males were enriched in the genus Candidatus Hepatoplasma and Aliiroseovarius genera. Moreover, the alpha diversity of microbiota decreased in PaV1-infected lobsters. A significant increase of the genus Candidatus Bacilloplasma was observed in infected lobsters, as well as a significant decrease in Nesterenkonia, Caldalkalibacillus, Pseudomonas, Cetobacterium and Phyllobacterium. We also observed an alteration in the abundances of Vibrio species. Results from this study suggest that PaV1 infection impacts intestinal microbiota composition in Panulirus argus in a sex-dependent manner.
Subject(s)
DNA Viruses/physiology , Gastrointestinal Microbiome , Palinuridae/microbiology , Animals , Bacteria/classification , Bacteria/isolation & purification , Female , Male , Palinuridae/virology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Sex FactorsABSTRACT
Exposure of marine fish to hydrocarbon compounds from crude oil can cause physiological and ecological alterations that can result in several cytotoxic, genotoxic, and teratogenic damages. One consequence of this exposure is the dysbiosis of the gut microbiota, where the normal bacterial composition is modified. Herein, we assessed the effect of the exposure to water accommodated fraction (WAF) of a light crude oil into the gut microbiota of a native species, the lined sole Achirus lineatus, a benthonic fish widely distributed in the Gulf of Mexico (GoM). We performed a chronic bioassay using two WAF concentrations (5 and 10% v/v), collecting lined sole entire gastrointestinal tracts for microbiota analyses at two timepoints, 14 and 28 days. Changes in the gut microbiota composition were determined by high throughput amplicon sequencing of the gene 16S rRNA. Diversity analyses showed that WAF exposure produced similar changes in the microbiota composition at both concentrations. Metagenomic functional prediction showed that these alterations could result in a shift in the gut redox status, towards a more anoxygenic environment. Enrichment of bacteria capable of use hydrocarbon as carbon source seems to be fast regardless time of exposure or WAF concentrations. Our results suggest that chronic WAF exposure can cause a dysbiosis in this benthic native species from the GoM.
Subject(s)
Gastrointestinal Microbiome , Petroleum , Water Pollutants, Chemical , Animals , Gulf of Mexico , Petroleum/toxicity , RNA, Ribosomal, 16S/genetics , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicityABSTRACT
The Caribbean spiny lobster Panulirus argus (Latreille, 1084) sustains economically valuable fisheries throughout the wider Caribbean region. This species is currently affected by the pathogenic virus Panulirus argus Virus 1 (PaV1) that causes a systemic and chronic-degenerative infection in juvenile spiny lobsters P. argus. To date, there is no available information regarding the host alterations induced by this pathogen at the molecular level. In the present study, comparative proteomic analyses of the changes in the hepatopancreas between infected and non-infected juvenile lobsters were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ) coupled to synchronous precursor selection (SPS)-based MS3. We identified a total of 636 proteins, being 68 down-regulated and 71 up-regulated proteins. Among the down-regulated proteins, we identified several enzymes involved in the metabolism of hormones and lipids, digestive proteases and glycosidases, while proteins associated with the histone core, protein synthesis, immune response and RNA regulation were up-regulated. Several misregulated enzymes involved in the regulation of neuromodulators were also identified. RT-qPCR assays were used to validate the expression of transcripts encoding for selected differential proteins that were in concordance to proteomic data, as well as the tendency observed in the enzymatic activities of trypsin, chymotrypsin, and glycosidase. In a similar way, we observed glycogen reduction in muscle, and an increase in plasma acylglycerides and glucose, which may be explained by proteomic data. This study provides the first insight into the molecular changes in the hepatopancreas of Caribbean spiny lobsters associated to PaV1 infection. Data provided herein would help to clarify the origin of the molecular misregulations observed at macroscopic level in this host-pathogen interaction.
ABSTRACT
To elucidate the proteomic responses of shrimp hemocytes to white spot syndrome virus (WSSV) infection at the proteome level, a quantitative shotgun proteomic analysis was performed to detect differentially synthesized proteins in infected hemocytes of white shrimp (Litopenaeus vannamei). We identified 1528 proteins associated to 203 gene ontology (GO) categories. The most representative GO categories were regulation of cellular processes, organic substance metabolic processes and nitrogen compound metabolic processes. Most of the 83 detected up-regulated proteins are involved in DNA regulation and organization and cell signaling. In contrast, most of the 40 down-regulated proteins were related to immune defense processes, protein folding, and development. Differentially induced proteins were further analyzed at the transcript level by RT-qPCR to validate the results. This work provides new insights into the alterations of L. vannamei hemocytes at the protein level at 12â¯h post-infection with WSSV. Interestingly, several of the up-regulated proteins are allergy-related proteins in humans. Based on our results, we suggest a deeper analysis of the effects of this interaction on the regulation of allergy related-proteins as their up-regulation during WSSV could represent a threat to human health.
Subject(s)
Arthropod Proteins/metabolism , DNA Virus Infections/immunology , Hemocytes/physiology , Hypersensitivity/metabolism , Penaeidae/immunology , White spot syndrome virus 1/immunology , Animals , Arthropod Proteins/genetics , Gene Expression Profiling , Gene Ontology , Humans , Hypersensitivity/genetics , Immunity, Innate/genetics , Penaeidae/genetics , Penaeidae/virology , ProteomeABSTRACT
Plants respond to drought stress through the ABA dependent and independent pathways, which in turn modulate transcriptional regulatory hubs. Here, we employed Illumina RNA-Seq to analyze a total of 18 cDNA libraries from leaves, sap, and roots of papaya plants under drought stress. Reference and de novo transcriptomic analyses identified 8,549 and 6,089 drought-responsive genes and unigenes, respectively. Core sets of 6 and 34 genes were simultaneously up- or down-regulated, respectively, in all stressed samples. Moreover, GO enrichment analysis revealed that under moderate drought stress, processes related to cell cycle and DNA repair were up-regulated in leaves and sap; while responses to abiotic stress, hormone signaling, sucrose metabolism, and suberin biosynthesis were up-regulated in roots. Under severe drought stress, biological processes related to abiotic stress, hormone signaling, and oxidation-reduction were up-regulated in all tissues. Moreover, similar biological processes were commonly down-regulated in all stressed samples. Furthermore, co-expression network analysis revealed three and eight transcriptionally regulated modules in leaves and roots, respectively. Seventeen stress-related TFs were identified, potentially serving as main regulatory hubs in leaves and roots. Our findings provide insight into the molecular responses of papaya plant to drought, which could contribute to the improvement of this important tropical crop.