Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(20)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623111

ABSTRACT

Machine learning techniques combined with wearable electronics can deliver accurate short-term blood glucose level prediction models. These models can learn personalized glucose-insulin dynamics based on the sensor data collected by monitoring several aspects of the physiological condition and daily activity of an individual. Until now, the prevalent approach for developing data-driven prediction models was to collect as much data as possible to help physicians and patients optimally adjust therapy. The objective of this work was to investigate the minimum data variety, volume, and velocity required to create accurate person-centric short-term prediction models. We developed a series of these models using different machine learning time series forecasting techniques suitable for execution within a wearable processor. We conducted an extensive passive patient monitoring study in real-world conditions to build an appropriate data set. The study involved a subset of type 1 diabetic subjects wearing a flash glucose monitoring system. We comparatively and quantitatively evaluated the performance of the developed data-driven prediction models and the corresponding machine learning techniques. Our results indicate that very accurate short-term prediction can be achieved by only monitoring interstitial glucose data over a very short time period and using a low sampling frequency. The models developed can predict glucose levels within a 15-min horizon with an average error as low as 15.43 mg/dL using only 24 historic values collected within a period of sex hours, and by increasing the sampling frequency to include 72 values, the average error is reduced to 10.15 mg/dL. Our prediction models are suitable for execution within a wearable device, requiring the minimum hardware requirements while at simultaneously achieving very high prediction accuracy.


Subject(s)
Big Data , Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Machine Learning , Adolescent , Adult , Diabetes Mellitus, Type 1/epidemiology , Female , Humans , Male , Middle Aged , Young Adult
2.
Sensors (Basel) ; 19(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635378

ABSTRACT

Type 1 Diabetes Mellitus (DM1) patients are used to checking their blood glucose levels several times per day through finger sticks and, by subjectively handling this information, to try to predict their future glycaemia in order to choose a proper strategy to keep their glucose levels under control, in terms of insulin dosages and other factors. However, recent Internet of Things (IoT) devices and novel biosensors have allowed the continuous collection of the value of the glucose level by means of Continuous Glucose Monitoring (CGM) so that, with the proper Machine Learning (ML) algorithms, glucose evolution can be modeled, thus permitting a forecast of this variable. On the other hand, glycaemia dynamics require that such a model be user-centric and should be recalculated continuously in order to reflect the exact status of the patient, i.e., an 'on-the-fly' approach. In order to avoid, for example, the risk of being disconnected from the Internet, it would be ideal if this task could be performed locally in constrained devices like smartphones, but this would only be feasible if the execution times were fast enough. Therefore, in order to analyze if such a possibility is viable or not, an extensive, passive, CGM study has been carried out with 25 DM1 patients in order to build a solid dataset. Then, some well-known univariate algorithms have been executed in a desktop computer (as a reference) and two constrained devices: a smartphone and a Raspberry Pi, taking into account only past glycaemia data to forecast glucose levels. The results indicate that it is possible to forecast, in a smartphone, a 15-min horizon with a Root Mean Squared Error (RMSE) of 11.65 mg/dL in just 16.15 s, employing a 10-min sampling of the past 6 h of data and the Random Forest algorithm. With the Raspberry Pi, the computational effort increases to 56.49 s assuming the previously mentioned parameters, but this can be improved to 34.89 s if Support Vector Machines are applied, achieving in this case an RMSE of 19.90 mg/dL. Thus, this paper concludes that local on-the-fly forecasting of glycaemia would be affordable with constrained devices.


Subject(s)
Blood Glucose Self-Monitoring/methods , Blood Glucose/analysis , Diabetes Mellitus, Type 1/pathology , Adolescent , Adult , Blood Glucose Self-Monitoring/instrumentation , Female , Humans , Machine Learning , Male , Middle Aged , Smartphone , Wearable Electronic Devices , Young Adult
3.
J Diabetes Res ; 2018: 4826984, 2018.
Article in English | MEDLINE | ID: mdl-30363935

ABSTRACT

Type 1 diabetes mellitus (DM1) is a growing disease, and a deep understanding of the patient is required to prescribe the most appropriate treatment, adjusted to the patient's habits and characteristics. Before now, knowledge regarding each patient has been incomplete, discontinuous, and partial. However, the recent development of continuous glucose monitoring (CGM) and new biomedical sensors/gadgets, based on automatic continuous monitoring, offers a new perspective on DM1 management, since these innovative devices allow the collection of 24-hour biomedical data in addition to blood glucose levels. With this, it is possible to deeply characterize a diabetic person, offering a better understanding of his or her illness evolution, and, going further, develop new strategies to manage DM1. This new and global monitoring makes it possible to extend the "on-board" concept to other features. This well-known approach to the processing of variable "insulin" describes some inertias and aggregated/remaining effects. In this work, such analysis is carried out along with a thorough study of the significant variables to be taken into account/monitored-and how to arrange them-for a deep characterization of diabetic patients. Lastly, we present a case study evaluating the experience of the continuous and comprehensive monitoring of a diabetic patient, concluding that the huge potential of this new perspective could provide an acute insight into the patient's status and extract the maximum amount of knowledge, thus improving the DM1 management system in order to be fully functional.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/therapeutic use , Insulin Infusion Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...