Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Aquac Nutr ; 2023: 5788432, 2023.
Article in English | MEDLINE | ID: mdl-38130630

ABSTRACT

Substitution of fish-based ingredients may alter the nutritional profile of the feeds, including the vitamin contents, ultimately leading to unbalanced vitamin supply. Vitamin A plays an essential role in epithelium preservation, cell differentiation, reproduction, and vision. It also intervenes in skeletogenesis through chondrocytes development. Therefore, low levels of vitamin A may cause poor growth and abnormal bone development among other symptoms. Besides, in gilthead seabream excess vitamin A altered bone structure and homeostasis, indicating that an upper level for vitamin A in feeds for this species must be defined. For this purpose, a practical plant-based diet (FM 10% and FO 6%) containing five increasing levels of vitamin A (24,000, 26,000, 27,000, 31,000, and 37,000 IU/kg) supplemented as retinyl acetate was formulated to identify the effects of high levels of vitamin A for gilthead seabream juveniles. The trial was conducted with 450 total fish distributed into 15 tanks, where each diet was tested in triplicates for 70 days. At the end of the trial, samples were taken for analyses of vitamin A-relevant markers. At the end of the trial the high levels of vitamin A supplementation did not cause a reduction in growth, whereas no significant effect was observed for the feed efficiency, specific growth rate, and feed convertion ratio. Although not significant, retinol content in liver showed a tendency to increase with the elevation of dietary vitamin A levels. Although minor, the highest level of vitamin A dietary content (37,000 IU/kg) caused a significant increase in caudal vertebrae partial fusion as well as caudal vertebrae malformations. Increasing dietary vitamin A was related to a reduction in the occurrence of microhemorrhages in the liver and a reduction in the presence of eosinophils associated to the pancreas. Overall, the results of the present study suggested that gilthead seabream juveniles fed a plant-based diet are able to tolerate very high levels of vitamin A supplementation when supplemented as retinyl acetate. Nevertheless, further supplementation should be avoided in order to reduce the prevalence of anomalies affecting the caudal vertebrae.

2.
Aquac Nutr ; 2023: 3061649, 2023.
Article in English | MEDLINE | ID: mdl-37260465

ABSTRACT

Vitamins D and K are essential fat-soluble nutrients that intervene in bone development processes among other biological functions. The present study is aimed at investigating the potential combined effect of dietary supplementation with vitamin D3 (cholecalciferol) and vitamin K3 (menadione) in gilthead seabream (Sparus aurata) larvae. For that purpose, seabream diets were supplemented with different combinations of vitamin D3/vitamin K3 (mg/kg diet) as follows: 0.00/0, 0.06/70, 0.06/170, 0.13/70, 0.13/170, 0.40/70, and 0.40/170. Feeding gilthead seabream larvae (22 days post hatch) for 21 days with the diets supplemented with 0.06-0.13 mg/kg vitamin D3 and 70 mg/kg vitamin K3 (diets 0.06/70 and 0.13/70) led to the highest larval growth and survival and the highest expression of important biomarkers of both bone development and health, such as bmp2, osx, and mgp, and calcium homeostasis, such as pthrp and casr. However, the increased supplementation with both vitamins at 0.40 mg/kg vitamin D3 and 170 mg/kg vitamin K3 (diet 0.40/170) reduced larval growth and survival, downregulated bmp2 and pthrp expressions, and upregulated osx and mgp, causing an unbalance in the relative expression of these genes. The results of the present study have shown the interaction between vitamin D3 supplementation and vitamin K3 supplementation in larval performance and gene expression related to bone development and calcium homeostasis, denoting the significance of a correct balance between both vitamins in larval diets.

3.
Anim Reprod Sci ; 241: 106989, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35598363

ABSTRACT

Genetic selection programmes in gilthead seabream mainly focus on traits related to growth, disease resistance, skeletal anomalies, or fillet quality. However, the effect of selection for growth on the reproductive performance of seabream broodstock has not received much attention. The present study aimed to determine the effect of selection for growth traits, high (HG) or low (LG) growth, and broodstock feeding with fish oil (FO diet) or rapeseed oil (RO diet) as main lipid sources, on reproductive performance of gilthead seabream. For the first part of the spawning season (Phase I) HG and LG broodstock were fed a commercial diet and the HG broodstock produced a higher number of larvae and higher viable eggs, hatching and larval survival rates than LG broodstock, affecting egg fatty acid profiles. For the second part of the study (Phase II) broodstock were fed one of the two diets containing FO or RO. Fecundity in terms of viable eggs, hatchlings, and larvae produced, as well as fertilization rates, were improved in HG broodstock. Some fatty acids such as 18:0, 20:2n-6, 20:3n-3 or EPA/ARA were also affected by the growth selection. According to the two-way ANOVA analysis, feeding the RO diet did not significantly affect fecundity parameters, but slightly reduced fertilization and hatching rates in HG broodstock. Nevertheless, HG broodstock showed better spawning quality parameters than LG broodstock, even when they were fed the RO diet. Egg fatty acid profiles reflected diet composition, although DHA contents were not affected. In conclusion, broodstock selected for high growth had a positive effect on broodstock performance, and FO replacement by RO did not markedly affect reproduction providing that fatty acid contents were sufficient to fulfill the essential fatty acid requirements of gilthead seabream broodstock.


Subject(s)
Sea Bream , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Fats , Fatty Acids , Larva , Ovum , Reproduction , Sea Bream/genetics
4.
Sci Rep ; 10(1): 21905, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318526

ABSTRACT

The Senegalese sole (Solea senegalensis) is an economically important flatfish species. In this study, a genome draft was analyzed to identify microsatellite (SSR) markers for whole-genome genotyping. A subset of 224 contigs containing SSRs were preselected and validated by using a de novo female hybrid assembly. Overall, the SSR density in the genome was 886.7 markers per megabase of genomic sequences and the dinucleotide motif was the most abundant (52.4%). In silico comparison identified a set of 108 SSRs (with di-, tetra- or pentanucleotide motifs) widely distributed in the genome and suitable for primer design. A total of 106 markers were structured in thirteen multiplex PCR assays (with up to 10-plex) and the amplification conditions were optimized with a high-quality score. Main genetic diversity statistics and genotyping reliability were assessed. A subset of 40 high polymorphic markers were selected to optimize four supermultiplex PCRs (with up to 11-plex) for pedigree analysis. Theoretical exclusion probabilities and real parentage allocation tests using parent-offspring information confirmed their robustness and effectiveness for parental assignment. These new SSR markers were combined with previously published SSRs (in total 229 makers) to construct a new and improved integrated genetic map containing 21 linkage groups that matched with the expected number of chromosomes. Synteny analysis with respect to C. semilaevis provided new clues on chromosome evolution in flatfish and the formation of metacentric and submetacentric chromosomes in Senegalese sole.


Subject(s)
Chromosome Mapping , Flatfishes/genetics , Genetic Linkage , Microsatellite Repeats , Phylogeny , Animals , Genome-Wide Association Study , Synteny
5.
Animals (Basel) ; 10(11)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238560

ABSTRACT

Previous studies have shown that it is possible to increase the ability of marine fish to produce long-chain polyunsaturated fatty acid from their 18C precursors by nutritional programming or using broodstock with a higher fatty acyl desaturase 2 (fads2) expression. However, those studies failed to show the effect of these interventions on the expression of the fads2 gene in the developing egg. Moreover, there were no studies on the temporal expression of the fads2 during ontogeny in the gilthead sea bream (Sparus aurata). In order to determine the changes in expression of fads2 during ontogeny, gilthead sea bream broodstock with a high (HRO) or low (LRO) fads2 expression fed a diet previously used for nutritional programming, or a fish oil-based diet (LFO) were allowed to spawn. The samples were taken at the stages of spawning, morula, high blastula, gastrula, neurula, heart beating, hatch and 3 day-old first exogenous feeding larvae to determine fads2 expression throughout embryonic development. The results showed the presence of fads2 mRNA in the just spawned egg, denoting the maternal mRNA transfer to the developing oocyte. Later, fads2 expression increased after the neurula, from heart beating until 3-day-old larvae, denoting the transition from maternal to embryonic gene expression. In addition, the eggs obtained from broodstock with high fads2 expression showed a high docosahexaenoic acid content, which correlated with the downregulation of the fads2 expression found in the developing embryo and larvae. Finally, feeding with the nutritional programming diet with the partial replacement of fish oil by rapeseed oil did not affect the long chain polyunsaturated fatty acid (LC-PUFA) contents nor fads2 expression in the gilthead sea bream developing eggs.

6.
Life (Basel) ; 10(7)2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32707702

ABSTRACT

The principle aim of this study is to elucidate the relationship between the fatty acid desaturase 2 gene (fads2) expression pattern in peripheral blood cells (PBCs) and liver of gilthead seabream (GSB), Sparus aurata broodstock in order to determine the possible use of fads2 expression as a potential biomarker for the selection of broodstock. This selection could be utilized for breeding programs aiming to improve reproduction, health, and nutritional status. Passive Integrated Transponder (PIT)-tagged GSB broodstock (Male-1.22 ± 0.20 kg; 44.8 ± 2 cm and female-2.36 ± 0.64 kg; 55.1 cm) were fed a diet containing low levels of fish meal and fish oil (EPA 2.5; DHA 1.7 and n-3 LC-PUFA 4.6% TFA) for one month. After the feeding period, fads2 expression in PBCs and liver of both male and female broodstock were highly significantly correlated (r = 0.89; p < 0.001). Additionally, in male broodstock, liver fads2 expression was significantly correlated (p < 0.05) to liver contents in 16:0 (r = 0.95; p = 0.04) and total saturates (r = 0.97; p = 0.03) as well as to 20:3n-6/20:2n-6 (r = 0.98; p = 0.02) a Fads2 product/precursor ratio. Overall, we found a positive and significant correlation between fads2 expression levels in the PBCs and liver of GSB broodstock. PBCs fads2 expression levels indicate a strong potential for utilization as a non-invasive method to select animals having increased fatty acid bioconversion capability, better able to deal with diets free of fish meal and fish oil.

7.
J Nutr Sci ; 4: e16, 2015.
Article in English | MEDLINE | ID: mdl-26090096

ABSTRACT

Dietary fatty acids have been shown to exert a clear effect on the stress response, modulating the release of cortisol. The role of fatty acids on the expression of steroidogenic genes has been described in mammals, but little is known in fish. The effect of different fatty acids on the release of cortisol and expression of stress-related genes of European sea bass (Dicentrarchus labrax) head kidney, induced by a pulse of adenocorticotrophin hormone (ACTH), was studied. Tissue was maintained in superfusion with 60 min of incubation with EPA, DHA, arachidonic acid (ARA), linoleic acid or α-linolenic acid (ALA) during 490 min. Cortisol was measured by RIA. The quantification of stress-related genes transcripts was conducted by One-Step TaqMan real-time RT-PCR. There was an effect of the type of fatty acid on the ACTH-induced release of cortisol, values from ALA treatment being elevated within all of the experimental period. The expression of some steroidogenic genes, such as the steroidogenic acute regulatory protein (StAR) and c-fos, were affected by fatty acids, ALA increasing the expression of StAR after 1 h of ACTH stimulation whereas DHA, ARA and ALA increased the expression of c-fos after 20 min. ARA increased expression of the 11ß-hydroxylase gene. Expression of heat shock protein 70 (HSP70) was increased in all the experimental treatments except for ARA. Results corroborate previous studies of the effect of different fatty acids on the release of cortisol in marine fish and demonstrate that those effects are mediated by alteration of the expression of steroidogenic genes.

8.
Fish Shellfish Immunol ; 44(1): 100-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25655325

ABSTRACT

The decreased availability of fish oil, traditionally used as oil source in marine aquafeeds, has lead to the search for alternatives oils. Vegetable oils (VO) are being extensively used as lipid sources in marine fish diets, inducing an imbalance on certain dietary fatty acids. Alteration on the dietary ratio of w-6/w-3 has been described to have detrimental effects on fish immunity. Senegalese sole has high susceptibility to stress and diseases, and little is known on the effects of dietary VO on its immunity. In this study, Senegalese sole juveniles were fed diets (56% crude protein, 12% crude lipid) containing linseed (100LO), soybean (100SO) or fish (100FO) oils as unique oil source. Growth, cortisol and intestinal fatty acid composition were determined after 90 days. Moreover, at the final of the experiment a stress test (5 min of net chasing) was carried out. To evaluate the effect of diets and stress on intestine immunology, expression profiles of a set of 53 immune-related genes using RT-qPCR was also performed. The use of VO did not induced changes in fish growth, but affected fatty acid profile of intestine and expression of immune-related genes. The use of SO (rich in n-6 fatty acids) induced an over-expression of those genes related to complement pathway, recognizing pathogen associated to molecular patterns, defensive response against bacteria, defensive response against viruses, antigen differentiation, cytokines and their receptors. This general over-expression could indicate an activation of inflammatory processes in fish gut. When a stress was applied, a decrease of mRNA levels of different immune-related genes with respect to the unstressed control could be observed in fish fed 100FO. However, fish fed 100LO, with a higher ALA/LA ratio, seemed to ameliorate the effects of combined effects of FO substitution plus stressful situation whereas fish fed 100SO did not show this type of response.


Subject(s)
Cottonseed Oil/metabolism , Dietary Fats, Unsaturated/metabolism , Fish Proteins/genetics , Flatfishes/genetics , Flatfishes/immunology , Linseed Oil/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Intestinal Mucosa/metabolism , Intestines/drug effects , Organ Specificity , Random Allocation , Real-Time Polymerase Chain Reaction/veterinary , Stress, Physiological
9.
Fish Shellfish Immunol ; 42(2): 508-16, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25447638

ABSTRACT

The study assesses the effects of dietary concentrated mannan oligosaccharides (cMOS) on fish performance, biochemical composition, tissue fatty acid profiles, liver and posterior gut morphology and gen expression of selected parameters involved on the intestinal immune response and liver lipid metabolism of European sea bass (Dicentrarchus labrax). For that purpose, specimens of 20 g were fed during 8 weeks at 0 and 1.6 g kg(-1) dietary cMOS of inclusion in a commercial sea bass diet. Dietary cMOS enhanced fish length, specific and relative growth without affecting tissue proximate composition. However, cMOS supplementation altered especially liver and muscle fatty acid profiles by reducing levels of those fatty acids that are preferential substrates for ß-oxidation in spite of a preferential retention of long chain polyunsaturated fatty acids (LC-PUFA), such as 20:4n-6 or 22:5n-6, in relation to the down-regulation of delta 6/5 desaturase gene expression found in liver. Besides, dietary cMOS supplementation reduced posterior gut intestinal folds width and induced changes on the gene expression level of certain immune-related genes mainly by down regulating transforming growth factor ß (TGFß) and up-regulating immunoglobulin (Ig), major histocompatibility complex class II (MHCII), T cell receptor ß (TCRß) and Caspase 3 (Casp-3). Thus, dietary cMOS inclusion at 0.16% promoted European sea bass specific growth rate and length, stimulated selected cellular GALT-associated parameters and affected lipid metabolism in muscle and liver pointing to a higher LC-PUFA accumulation and promoted ß-oxidation.


Subject(s)
Bass/physiology , Mannans/pharmacology , Oligosaccharides/pharmacology , Animal Feed/analysis , Animals , Bass/genetics , Bass/growth & development , Bass/immunology , Diet/veterinary , Dietary Supplements/analysis , Gene Expression Regulation/drug effects , Immunity, Innate/drug effects , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...