Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 17(6): 677-86, 2016 06.
Article in English | MEDLINE | ID: mdl-27089382

ABSTRACT

Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host.


Subject(s)
Autophagy/genetics , Lipid Metabolism/genetics , Lysosomes/physiology , Macrophages/physiology , MicroRNAs/metabolism , Mycobacterium tuberculosis/physiology , Tuberculosis/genetics , Animals , Cells, Cultured , Host-Pathogen Interactions , Humans , Immune Evasion , Lysosomes/microbiology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...