Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 458(7238): 607-9, 2009 Apr 02.
Article in English | MEDLINE | ID: mdl-19340076

ABSTRACT

Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium, which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars and microquasars or through dark matter annihilation, which would be 'primary sources'. Previous statistically limited measurements of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

2.
Adv Space Res ; 33(8): 1352-7, 2004.
Article in English | MEDLINE | ID: mdl-15803627

ABSTRACT

The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions.


Subject(s)
Brain/radiation effects , Cosmic Radiation , Light , Retina/radiation effects , Space Flight/instrumentation , Visual Perception/radiation effects , Weightlessness , Dark Adaptation , Electrophysiology , Equipment Design , Extraterrestrial Environment , Humans , Monitoring, Physiologic , Phosphenes , Photic Stimulation , Radiation Monitoring , Research
4.
Adv Space Res ; 31(1): 135-40, 2003.
Article in English | MEDLINE | ID: mdl-12577986

ABSTRACT

In this work we present preliminary results of nuclear composition measurements on board space station MIR obtained with SILEYE-2 particle telescope. SILEYE-2 was placed on MIR in 1997 and has been working since then. It consists of an array of 6 active silicon strip detectors which allow nuclear and energetic identification of cosmic rays in the energy range between approximately 30 and 200 MeV/n. The device is attached to an helmet and connected to an eye mask which shields the cosmonaut eyes from light and allow studies of the Light Flashes (LF) phenomenon. In addition to the study of the causes of LF, the device is used to perform real time long term radiation environment monitoring inside the MIR, performing measurements in solar quiet and active days.


Subject(s)
Cosmic Radiation , Phosphenes , Radiation Monitoring/instrumentation , Solar Activity , Space Flight/instrumentation , Dose-Response Relationship, Radiation , Equipment Design , Extraterrestrial Environment , Eye/radiation effects , Head Protective Devices , Humans , Light , Photic Stimulation , Silicon , Spacecraft/instrumentation
5.
Adv Space Res ; 31(1): 141-6, 2003.
Article in English | MEDLINE | ID: mdl-12577991

ABSTRACT

The ALTEA project participates to the quest for increasing the safety of manned space flights. It addresses the problems related to possible functional damage to neural cells and circuits due to particle radiation in space environment. Specifically it aims at studying the functionality of the astronauts' Central Nervous Systems (CNS) during long space flights and relating it to the peculiar environments in space, with a particular focus on the particle flux impinging in the head. The project is a large international and multidisciplinary collaboration. Competences in particle physics, neurophysiology, psychophysiology, electronics, space environment, data analyses will work together to construct the fully integrated vision electrophysiology and particle analyser system which is the core device of the project: an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in late 2002. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.


Subject(s)
Central Nervous System/radiation effects , Cosmic Radiation , Phosphenes , Radiation Monitoring/instrumentation , Space Flight/instrumentation , Weightlessness , Adaptation, Physiological , Aerospace Medicine/instrumentation , Central Nervous System/physiology , Electroencephalography , Equipment Design , Head Protective Devices , Humans , Monitoring, Physiologic/instrumentation , Photic Stimulation , Radiation Dosage , Retina/physiology , Retina/radiation effects
6.
Acta Astronaut ; 50(8): 511-25, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11962526

ABSTRACT

The phenomenon of light flashes (LF) in eyes for people in space has been investigated onboard Mir. Data on particles hitting the eye have been collected with the SilEye detectors, and correlated with human observations. It is found that a nucleus in the radiation environment of Mir has roughly a 1% probability to cause an LF, whereas the proton probability is almost three orders of magnitude less. As a function of LET, the LF probability increases above 10 keV/micrometer, reaching about 5% at around 50 keV/micrometer.


Subject(s)
Cosmic Radiation , Eye/radiation effects , Light , Radiation Monitoring/instrumentation , Space Flight , Visual Perception/radiation effects , Aerospace Medicine , Astronauts , Heavy Ions , Humans , Linear Energy Transfer , Male , Phosphenes , Protons , Radiometry , Silicon , Solar Activity , Time Factors , Vision, Ocular/radiation effects , Weightlessness
7.
Phys Med ; 17 Suppl 1: 255-7, 2001.
Article in English | MEDLINE | ID: mdl-11776990

ABSTRACT

The ALTEA project studies the problems related to possible functional damage to the Central Nervous System (CNS) due to particle radiation in space environment. The project is a large international and multi-disciplinary collaboration. The ALTEA instrumentation is an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and the passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in February 2003. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.


Subject(s)
Cosmic Radiation , Eye/radiation effects , Light , Phosphenes , Space Flight/instrumentation , Visual Perception/radiation effects , Aerospace Medicine/instrumentation , Dark Adaptation/radiation effects , Electroencephalography , Equipment Design , Extraterrestrial Environment , Humans , Photic Stimulation/instrumentation , Spacecraft
8.
Astrophys J ; 534(2): L177-L180, 2000 May 10.
Article in English | MEDLINE | ID: mdl-10813676

ABSTRACT

We report new results for the cosmic-ray antiproton-to-proton ratio from 3 to 50 GeV at the top of the atmosphere. These results represent the first measurements, on an event-by-event basis, of mass-resolved antiprotons above 18 GeV. The results were obtained with the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas-RICH (Ring-Imaging Cerenkov) counter and a silicon-tungsten imaging calorimeter. The RICH detector was the first ever flown that is capable of identifying charge-one particles at energies above 5 GeV. The spectrometer was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The measured p&d1;/p ratio is in agreement with a pure secondary interstellar production.

9.
Adv Space Res ; 25(10): 2075-9, 2000.
Article in English | MEDLINE | ID: mdl-11542859

ABSTRACT

The SilEye experiment aims to study the cause and processes related to the anomalous Light Flashes (LF) perceived by astronauts in orbit and their relation with Cosmic Rays. These observations will be also useful in the study of the long duration manned space flight environment. Two PC-driven silicon detector telescopes have been built and placed aboard Space Station MIR. SilEye-1 was launched in 1995 and provided particles track and LF information; the data gathered indicate a linear dependence of FLF(Hz) ( 4 2) 10(3) 5.3 1.7 10(4) Fpart(Hz) if South Atlantic Anomaly fluxes are not included. Even though higher statistic is required, this is an indication that heavy ion interactions with the eye are the main LF cause. To improve quality and quantity of measurements, a second apparatus, SilEye-2, was placed on MIR in 1997, and started work from August 1998. This instrument provides energetic information, which allows nuclear identification in selected energy ranges; we present preliminary measurements of the radiation field inside MIR performed with SilEye-2 detector in June 1998.


Subject(s)
Cosmic Radiation , Light , Protons , Space Flight/instrumentation , Visual Perception/radiation effects , Dark Adaptation , Data Interpretation, Statistical , Humans , Photic Stimulation , Radiation Dosage , Silicon , Spacecraft/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...