Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 86(15): 7819-27, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25057757

ABSTRACT

Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 µM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2.2% to 2.8% (k = 2). The volume of air samples was traceable to the kilogram via weighing of water for the calibration of the sampling syringe. Procedural blanks represented on average less than 0.1% of the mass of Hg present in 7.4 cm(3) of air, and correcting for these blanks was not an important source of uncertainty.

2.
Rapid Commun Mass Spectrom ; 25(19): 2721-31, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21913249

ABSTRACT

We propose a method for the authentication of the origin of vegetables grown under similar weather conditions, in sites less than 10 km distance from the sea and distributed over a rather small scale area (58651 km(2)). We studied how the strontium (Sr) isotopic signature and selected elemental concentrations ([Mn], [Cu], [Zn], [Rb], [Sr] and [Cd]) in early potatoes from three neighbouring administrative regions in the south of Italy were related to the geological substrate (alluvial sediments, volcanic substrates and carbonate rocks) and to selected soil chemical properties influencing the bioavailability of elements in soils (pH, cation exchange capacity and total carbonate content). Through multiple-step multivariate statistics (PLS-DA) we could assign 26 potatoes (including two already commercialised samples) to their respective eight sites of production, corresponding to the first two types of geological substrates. The other 12 potatoes from four sites of production had similar characteristics in terms of the geological substrate (third type) and these soil properties could be grouped together. In this case, more discriminative parameters would be required to allow the differentiation between sites. The validation of our models included external prediction tests with data of potatoes harvested the year before and a study on the robustness of the uncertainties of the measurement results. Annual variations between multi-elemental and Sr isotopic fingerprints were observed in potatoes harvested from soils overlying carbonate rocks, stressing the importance of testing long term variations in authentication studies.


Subject(s)
Metals, Heavy/analysis , Soil/chemistry , Solanum tuberosum/chemistry , Strontium/analysis , Carbonates/chemistry , Discriminant Analysis , Geography , Hydrogen-Ion Concentration , Italy , Least-Squares Analysis , Models, Chemical , Multivariate Analysis , Reproducibility of Results , Strontium/chemistry , Strontium Isotopes/analysis
3.
J Environ Sci (China) ; 22(9): 1398-406, 2010.
Article in English | MEDLINE | ID: mdl-21174971

ABSTRACT

A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.


Subject(s)
Environmental Monitoring/methods , Soil/analysis , Soil/chemistry , Zinc/chemistry , Zinc/metabolism , Escherichia coli/metabolism , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...