Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanoscale ; 14(18): 6789-6801, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35467684

ABSTRACT

The synthesis of nanosized metal-organic frameworks (NMOFs) is requisite for their application as injectable drug delivery systems (DDSs) and other biorelevant purposes. Herein, we have critically examined the role of different synthetic parameters leading to the production of UiO-66 crystals smaller than 100 nm. Of note, we demonstrate the co-modulator role conferred by halide ions, not only to produce NMOFs with precise morphology and size, but also to significantly improve the reaction yield. The resulting NMOFs are highly crystalline and exhibit sustained colloidal stability in different biologically relevant media. As a proof of concept, these NMOFs were loaded with Rhodamine 6G (R6G), which remained trapped in most common biologically relevant media. When incubated with living mammalian cells, the R6G-loaded NMOFs were efficiently internalized and did not impair cell viability even at relatively high doses.


Subject(s)
Inorganic Chemicals , Metal-Organic Frameworks , Organometallic Compounds , Phthalic Acids , Animals , Drug Delivery Systems , Mammals , Metal-Organic Frameworks/chemistry
2.
ACS Omega ; 7(13): 11353-11362, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35415325

ABSTRACT

Scattering-type scanning near-field optical microscopy (s-SNOM) has emerged over the past years as a powerful characterization tool that can probe important properties of advanced materials and biological samples in a label-free manner, with spatial resolutions lying in the nanoscale realm. In this work, we explore such usefulness in relationship with an interesting class of materials: polymer-coated gold nanoparticles (NPs). As thoroughly discussed in recent works, the interplay between the Au core and the polymeric shell has been found to be important in many applications devoted to biomedicine. We investigate bare Au NPs next to polystyrenesulfonate (PSS) and poly(diallyldimethylammonium chloride) (PDDA) coated ones under 532 nm laser excitation, an wavelength matching the surface plasmon band of the custom-synthesized nanoparticles. We observe consistent s-SNOM phase signals in the case of bare and shallow-coated Au NPs, whereas for thicker shell instances, these signals fade. For all investigated samples, the s-SNOM amplitude signals were found to be very weak, which may be related to reduced scattering efficiency due to absorption of the incident beam. We consider these observations important, as they may facilitate studies and applications in nanomedicine and nanotechnology where the precise positioning of polymer-coated Au NPs with nanoscale resolution is needed besides their dielectric function and related intrinsic optical properties, which are also quantitatively available with s-SNOM.

3.
J Phys Chem Lett ; 12(16): 3875-3884, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33856801

ABSTRACT

The experimental investigation of the unidirectional motion characterizing the photoisomerization of single-molecule rotary motors requires accessible lab prototypes featuring an electronic circular dichroism (ECD) signal that is sensitive to the geometrical and electronic changes occurring during an ultrafast reactive process. Here we report a combined experimental/computational study of a candidate obtained via the asymmetrization of a light-driven biomimetic molecular switch. We show that the achieved motor has an ECD band that is remarkably sensitive to the isomerization motion, and it is therefore suitable for time-resolved ECD studies. However, we also find that, unexpectedly, the synthesized motor isomerizes on a time scale longer than the subpicosecond time measured for the achiral parent, a result that points to alternative candidates conserving a high reaction speed.


Subject(s)
Biomimetic Materials/chemistry , Indans/chemistry , Pyrrolidinones/chemistry , Biomimetic Materials/chemical synthesis , Biomimetic Materials/radiation effects , Circular Dichroism , Density Functional Theory , Indans/chemical synthesis , Indans/radiation effects , Models, Chemical , Pyrrolidinones/chemical synthesis , Pyrrolidinones/radiation effects , Rotation , Stereoisomerism , Ultraviolet Rays
4.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803869

ABSTRACT

The biomedical translational applications of functionalized nanoparticles require comprehensive studies on their effect on human stem cells. Here, we have tested neat star-shaped mesoporous silica nanoparticles (s-MSN) and their chemically functionalized derivates; we examined nanoparticles (NPs) with similar dimensions but different surface chemistry, due to the amino groups grafted on silica nanoparticles (s-MSN-NH2), and gold nanoseeds chemically adsorbed on silica nanoparticles (s-MSN-Au). The different samples were dropped on glass coverslips to obtain a homogeneous deposition differing only for NPs' chemical functionalization and suitable for long-term culture of human Bone Marrow-Mesenchymal stem cells (hBM-MSCs) and Adipose stem cells (hASCs). Our model allowed us to demonstrate that hBM-MSCs and hASCs have comparable growth curves, viability, and canonical Vinculin Focal adhesion spots on functionalized s-MSN-NH2 and s-MSN-Au as on neat s-MSN and control systems, but also to show morphological changes on all NP types compared to the control counterparts. The new shape was stem-cell-specific and was maintained on all types of NPs. Compared to the other NPs, s-MSN-Au exerted a small genotoxic effect on both stem cell types, which, however, did not affect the stem cell behavior, likely due to a peculiar stem cell metabolic restoration response.

5.
Int J Drug Policy ; 98: 103096, 2021 12.
Article in English | MEDLINE | ID: mdl-33446396

ABSTRACT

Grounded in intersubjective participatory action research, the people and dancefloors project has sought to produce a space for the co-creation of knowledge about dancefloors and drug taking, building a platform for developing insights from the positionality of current drug users. Through film, it provides hermeneutic insight while legitimising their voices. In this paper, we share some reflections as researchers/users/activists arising from our involvement in the project. To begin with, we reflect on the motivations for the project, and the epistemic suppositions that animated it. This is followed by conversational style interviews where we re-evaluate our position in light of the project, with a particular focus on the tensions that drug use introduces between professional, personal and political domains in our lives. These reflections are useful to people who use drugs and hold privilege by nature of their social and cultural position. While questioning the silencing of personal experiences in relation to drug use, we also react to some of the traditional tendencies of academia, including institutionalised individualism, which isolates researchers and discourages them from finding political collectivity, and the subjectivist/objectivist dichotomy, which supports a tendency to objectify research participants while removing the self from the equation. Despite the challenges that arise from disentangling our multiple experiences and identities, our intersubjective dialogue inspires deeper learning about ourselves and each other, encouraging us towards a more openly political stance.


Subject(s)
Communication , Humans
6.
Front Chem ; 8: 158, 2020.
Article in English | MEDLINE | ID: mdl-32219091

ABSTRACT

In this work we report the preparation and characterization of free-standing keratin-based films containing Au/Ag nanorods. The effect of nanorods surface chemistry on the optical and mechanical properties of keratin composite films is fully investigated. Colloid nanorods confer to the keratin films interesting color effects due to plasmonic absorptions of the metal nanostructures. The presence of metal NRs induces also substantial change in the protein fluorescence emission. In particular, the relative contribution of the ordered-protein aggregates emission is enhanced by the presence of cysteine and thus strictly related to the surface chemistry of nanorods. The presence of more packed supramolecular structures in the films containing metal nanorods (in particular cysteine modified ones) is confirmed by ATR measurements. In addition, the films containing nanorods show a higher Young's modulus compared to keratin alone and again the effect is more pronounced for cysteine modified nanorods. Collectively, the reported results indicate the optical and mechanical properties of keratin composites films are related to a common property and can be tuned simultaneously, paving the way to the optimization and improvement of their performances and enhancing the exploitation of keratin composites in highly technological optoelectronic applications.

7.
J Phys Chem B ; 122(27): 6872-6879, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29911868

ABSTRACT

Transmembrane proteins play important roles in intercellular signaling to regulate interactions among the adjacent cells and influence cell fate. The study of interactions between membrane proteins and nanomaterials is paramount for the design of nanomaterial-based therapies. In the present work, the fluorescence properties of the transmembrane receptor Notch2 have been investigated. In particular, the steady-state and time-resolved fluorescence methods have been used to characterize the emission of tryptophan residues of Notch2 and then this emission is used to monitor the effect of silver colloids on protein behavior. To this aim, silver colloids are prepared with two different methods to make sure that they bear hydrophilic (citrate ions, C-AgNPs) or hydrophobic (dodecanethiol molecules, D-AgNPs) capping agents. The preparation procedures are tightly controlled to obtain metal cores with similar size distributions (7.4 ± 2.5 and 5.0 ± 0.8 nm, respectively), thus, making the comparison of the results easier. The occurrence of strong interactions between Notch2 and D-AgNPs is suggested by the efficient and statistically relevant quenching of the stationary protein emission already at low nanoparticle (NP) concentrations (ca. 12% quenching with [D-AgNPs] = 0.6 nM). The quenching becomes even more pronounced (ca. 60%) when [D-AgNPs] is raised to 8.72 nM. On the other hand, the addition of increasing concentrations of C-AgNPs to Notch2 does not affect the protein fluorescence (intensity variations below 5%) indicating that negligible interactions are taking place. The fluorescence data, recorded in the presence of increasing concentrations of silver nanoparticles, are then analyzed through the Stern-Volmer equation and the sphere of action model to discuss the nature of interactions. The effect of D-AgNPs on the fluorescence decay times of Notch2 is also investigated and a decrease in the average decay time is observed (from 4.64 to 3.42 ns). The observed variations of the stationary and time-resolved fluorescence behavior of the protein are discussed in terms of static and collisional interactions. These results document that the capping shell is able to drive the protein-particle interactions, which likely have a hydrophobic nature.


Subject(s)
Metal Nanoparticles/chemistry , Receptor, Notch2/chemistry , Silver/chemistry , Citric Acid/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Particle Size , Receptor, Notch2/metabolism , Spectrometry, Fluorescence
8.
Photochem Photobiol Sci ; 17(8): 995-1002, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-29904767

ABSTRACT

The use of plasmonic nanomaterials is a challenging strategy to control radiation and radiation-induced processes at a nanometric scale. The localized surface plasmons of metal nanoparticles have been shown to affect the efficiency of a variety of radiative and non-radiative processes occurring in organic molecules. In this contribution, we present an overview of the results obtained through an original approach based on the hierarchical assembly of plasmonic gold colloids on silica templates, covalently doped with organic dyes. The detailed morphological characterization demonstrates the disposition of gold colloids on silica achieved through the tight control of the synthetic conditions. The studies carried out while gradually increasing the concentration of gold nanoparticles allow the detailed investigation of the effects of the progressive addition of plasmonic particles on the photophysical behaviour of organic molecules. In particular, the fluorescence behaviour of three dyes with different spectral properties, namely fluorescein, rhodamine B and 9-aminoacridine, are investigated in the presence of increasing concentrations of gold nanoparticles. In order to fix the distance between the dye and the gold nanoparticles, the dyes are anchored to silica nanoparticles, and the metal colloids are chemically adsorbed on the silica surface. The steady state and time-resolved data are analysed to evaluate the impact of plasmonic nanoparticles on the radiative and non-radiative processes of the dyes; the data provide evidence that the modulation of the fluorescence intensity (enhancement or quenching) can be achieved by changing the concentration of gold colloids. The plasmonic nanostructures can be employed to favour one deactivation process over the others. For example, we demonstrate that the photoinduced formation of reactive oxygen species (ROS) can be enhanced upon the plasmonic engineering of a photosensitizing agent (Protoporphyrin IX, PpIX). The Vis-excitation of silica-PpIX samples in the presence of gold nanoparticles results in a faster and more efficient photoinduced formation of ROS species either in solution or in a hydrogel. The ROS efficiency data and the fluorescence behaviour of PpIX in the presence of gold colloids suggest that the enhancement of the excitation field occurs through a plasmonic effect. For the application of the assembled hybrid materials, further advantages come from the development of photosensitizer-containing hydrogel films that are able to efficiently produce ROS upon visible excitation. Our preliminary results are herein reported and discussed.

9.
Int J Drug Policy ; 57: 61-71, 2018 07.
Article in English | MEDLINE | ID: mdl-29702393

ABSTRACT

BACKGROUND: It is increasingly accepted that a view of policy as a rational process of fitting evidence-based means to rationally justified ends is inadequate for understanding the actual processes of drug policy making. We aim to provide a better description and explanation of recent English drug policy decisions. METHOD: We develop the policy constellation concept from the work of Habermas, in dialogue with data from two contemporary debates in English policy; on decriminalisation of drug possession and on recovery in drug treatment. We collect data on these debates through long-term participant observation, stakeholder interviews (n = 15) and documentary analysis. RESULTS: We show the importance of social asymmetries in power in enabling structurally advantaged groups to achieve the institutionalisation of their moral preferences as well as the reproduction of their social and economic power through the deployment of policies that reflect their material interests and normative beliefs. The most influential actors in English drug policy come together in a 'medico-penal constellation', in which the aims and practices of public health and social control overlap. Formal decriminalisation of possession has not occurred, despite the efforts of members of a challenging constellation which supports it. Recovery was put forward as the aim of drug treatment by members of a more powerfully connected constellation. It has been absorbed into the practice of 'recovery-oriented' drug treatment in a way that maintains the power of public health professionals to determine the form of treatment. CONCLUSION: Actors who share interests and norms come together in policy constellations. Strategic action within and between constellations creates policies that may not take the form that was intended by any individual actor. These policies do not result from purely rational deliberation, but are produced through 'systematically distorted communication'. They enable the most structurally favoured actors to institutionalise their own normative preferences and structural positions.


Subject(s)
Health Policy , Policy Making , England , Humans , Power, Psychological , Social Control, Formal
10.
Nanomaterials (Basel) ; 6(6)2016 Jun 04.
Article in English | MEDLINE | ID: mdl-28335232

ABSTRACT

The preparation of tailored nanomaterials able to support cell growth and viability is mandatory for tissue engineering applications. In the present work, silica nanoparticles were prepared by a sol-gel procedure and were then functionalized by condensation of amino groups and by adsorption of silver nanoparticles. Transmission electron microscopy (TEM) imaging was used to establish the morphology and the average dimensions of about 130 nm, which were not affected by the functionalization. The three silica samples were deposited (1 mg/mL) on cover glasses, which were used as a substrate to culture adult human bone marrow-mesenchymal stem cells (hBM-MSCs) and human adipose-derived stem cells (hASCs). The good cell viability over the different silica surfaces was evaluated by monitoring the mitochondrial dehydrogenase activity. The analysis of the morphological parameters (aspect ratio, cell length, and nuclear shape Index) yielded information about the interactions of stem cells with the surface of three different nanoparticles. The data are discussed in terms of chemical properties of the surface of silica nanoparticles.

11.
Int J Drug Policy ; 25(5): 978-84, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24746642

ABSTRACT

AIM: To evaluate, through a case study, the extent to which elements of governance and elements of government are influential in determining the implementation or non-implementation of a drugs intervention. METHODS: Comparative analysis of the case of a drug consumption room in the UK (England) and Australia (New South Wales), including 16 semi-structured interviews with key stakeholders and analysis of relevant documents according to characteristic features of governance and government (power decentralisation, power centralisation, independent self-organising policy networks, use of evidence, top-down steering/directing, legislation). RESULTS: Characteristic features of both governance and government are found in the data. Elements of governance are more prominent in New South Wales, Australia than in England, UK, where government prevails. Government is seen as the most important actor at play in the making, or absence, of drug consumption rooms. CONCLUSIONS: Both governance and government are useful frameworks in conceptualising the policy process. The governance narrative risks overlooking the importance of traditional government structures. In the case of drug consumption rooms in the UK and Australia, a focus on government is shown to have been crucial in determining whether the intervention was implemented.


Subject(s)
Government , Health Policy , Substance Abuse Treatment Centers/legislation & jurisprudence , Substance-Related Disorders/therapy , Data Collection , England , Humans , New South Wales , Policy Making , Substance Abuse Treatment Centers/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL
...