Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(25): 11812-11820, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38857413

ABSTRACT

The electronic configuration of transition metal centers and their ligands is crucial for redox reactions in metal catalysis and electrochemistry. We characterize the electronic structure of gas-phase nickel monohalide cations via nickel L2,3-edge X-ray absorption spectroscopy. Comparison with multiplet charge-transfer simulations and experimental spectra of selectively prepared nickel monocations in both ground- and excited-state configurations are used to facilitate our analysis. Only for [NiF]+ with an assigned ground state of 3Π can the bonding be described as predominantly ionic, while the heavier halides with assigned ground states of 3Π or 3Δ exhibit a predominantly covalent contribution. The increase in covalency is accompanied by a transition from a classical ligand field for [NiF]+ to an inverted ligand field for [NiCl]+, [NiBr]+, and [NiI]+, resulting in a leading 3d9 L̲ configuration with a ligand hole (L̲) and a 3d occupation indicative of nickel(I) compounds. Hence, the absence of a ligand hole in [NiF]+ precludes any ligand-based redox reactions. Additionally, we demonstrate that the shift in energy of the L3 resonance is reduced compared to that of isolated atoms upon the formation of covalent compounds.

2.
Phys Chem Chem Phys ; 26(7): 5830-5835, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305255

ABSTRACT

The spin state of metal centers in many catalytic reactions has been demonstrated to be a rate limiting factor when high-valent metal centers such as manganese are involved. Although numerous manganese(V) complexes, including a few manganese(V) oxo complexes, have been identified, thus far only one of these, [MnVH3 buea(O)], has been directly confirmed to exist in a high spin state. Such a high-spin manganese(V) center may play a crucial role in the dioxygen formation process in the elusive S4 state of the Kok cycle in photosystem II. In this study, we provide direct experimental evidence, using X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS), of gas phase [OMnO]+ as the second known high-spin manganese(V) oxo complex. We conclusively assign the ground state as 3B1 (C2v). Additionally, we provide fingerprint spectra not only for [OMnV O]+, but also for the high-spin hydroxidooxidomanganese(IV) ion [OMnIV OH]+ in its 4A'' (Cs) ground state that is expected to exhibit similar XAS and XMCD spectral signatures to neutral dioxidomanganese(IV).

3.
Phys Chem Chem Phys ; 26(7): 5986-5998, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38293812

ABSTRACT

"Tin-oxo cage" organometallic compounds are considered as photoresists for extreme ultraviolet (EUV) photolithography. To gain insight into their electronic structure and reactivity to ionizing radiation, we trapped bare gas-phase n-butyltin-oxo cage dications [(BuSn)12O14(OH)6]2+ in an ion trap and investigated their fragmentation upon soft X-ray photoabsorption by means of mass spectrometry. In complementary experiments, the tin-oxo cages with hydroxide and trifluoroacetate counter-anions were cast in thin films and studied using X-ray transmission spectroscopy. Quantum-chemical calculations were used to interpret the observed spectra. At the carbon K-edge, a distinct pre-edge absorption band can be attributed to transitions in which electrons are promoted from C1s orbitals to the lowest unoccupied molecular orbitals, which are delocalized orbitals with strong antibonding (Sn-C σ*) character. At higher energies, the most prominent resonant transitions involve C-C and C-H σ* valence states and Rydberg (3s and 3p) states. In the solid state, the onset of continuum ionization is shifted by ∼5 eV to lower energy with respect to the gas phase, due to the electrostatic effect of the counterions. The O K-edge also shows a pre-edge absorption, but it is devoid of any specific features, because there are many transitions from the different O1s orbitals to a large number of vacant orbitals. In the gas phase, formation of the parent [(BuSn)12O14(OH)6]3+ radical ion is not observed at the C K-edge nor at the O K-edge, because the loss of a butyl group from this species is very efficient. We do observe a number of triply charged photofragment ions, some of which have lost up to 5 butyl groups. Structures of these species are proposed based on quantum-chemical calculations, and pathways of formation are discussed. Our results provide insight into the electronic structure of alkyltin-oxo cages, which is a prerequisite for understanding their response to EUV photons and their performance as EUV photoresists.

4.
Phys Chem Chem Phys ; 26(2): 770-779, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37888897

ABSTRACT

The present study investigates the photofragmentation behavior of iodine-enhanced nitroimidazole-based radiosensitizer model compounds in their protonated form using near-edge X-ray absorption mass spectrometry and quantum mechanical calculations. These molecules possess dual functionality: improved photoabsorption capabilities and the ability to generate species that are relevant to cancer sensitization upon photofragmentation. Four samples were investigated by scanning the generated fragments in the energy regions around C 1s, N 1s, O 1s, and I 3d-edges with a particular focus on NO2+ production. The experimental summed ion yield spectra are explained using the theoretical near-edge X-ray absorption fine structure spectrum based on density functional theory. Born-Oppenheimer-based molecular dynamics simulations were performed to investigate the fragmentation processes.

5.
Phys Chem Chem Phys ; 25(37): 25603-25618, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37721108

ABSTRACT

Near-edge X-ray absorption mass spectrometry (NEXAMS) around the nitrogen and oxygen K-edges was employed on gas-phase peptides to probe the electronic transitions related to their protonation sites, namely at basic side chains, the N-terminus and the amide oxygen. The experimental results are supported by replica exchange molecular dynamics and density-functional theory and restricted open-shell configuration with single calculations to attribute the transitions responsible for the experimentally observed resonances. We studied five tailor-made glycine-based pentapeptides, where we identified the signature of the protonation site of N-terminal proline, histidine, lysine and arginine, at 406 eV, corresponding to N 1s → σ*(NHx+) (x = 2 or 3) transitions, depending on the peptides. We compared the spectra of pentaglycine and triglycine to evaluate the sensitivity of NEXAMS to protomers. Separate resonances have been identified to distinguish two protomers in triglycine, the protonation site at the N-terminus at 406 eV and the protonation site at the amide oxygen characterized by a transition at 403.1 eV.


Subject(s)
Amides , Peptides , Electronics , Nitrilotriacetic Acid , Oxygen , Protein Subunits , X-Rays
6.
Chemphyschem ; 24(22): e202300390, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37589334

ABSTRACT

The tetraoxido ruthenium(VIII) radical cation, [RuO4 ]+ , should be a strong oxidizing agent, but has been difficult to produce and investigate so far. In our X-ray absorption spectroscopy study, in combination with quantum-chemical calculations, we show that [RuO4 ]+ , produced via oxidation of ruthenium cations by ozone in the gas phase, forms the oxygen-centered radical ground state. The oxygen-centered radical character of [RuO4 ]+ is identified by the chemical shift at the ruthenium M3 edge, indicative of ruthenium(VIII), and by the presence of a characteristic low-energy transition at the oxygen K edge, involving an oxygen-centered singly-occupied molecular orbital, which is suppressed when the oxygen-centered radical is quenched by hydrogenation of [RuO4 ]+ to the closed-shell [RuO4 H]+ ion. Hydrogen-atom abstraction from methane is calculated to be only slightly less exothermic for [RuO4 ]+ than for [OsO4 ]+ .

7.
J Phys Chem A ; 127(34): 7121-7131, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37590497

ABSTRACT

Metal centers in transition metal-ligand complexes occur in a variety of oxidation states causing their redox activity and therefore making them relevant for applications in physics and chemistry. The electronic state of these complexes can be studied by X-ray absorption spectroscopy, which is, however, due to the complex spectral signature not always straightforward. Here, we study the electronic structure of gas-phase cationic manganese acetylacetonate complexes Mn(acac)1-3+ using X-ray absorption spectroscopy at the metal center and ligand constituents. The spectra are well reproduced by multiconfigurational wave function theory, time-dependent density functional theory as well as parameterized crystal field and charge transfer multiplet simulations. This enables us to get detailed insights into the electronic structure of ground-state Mn(acac)1-3+ and extract empirical parameters such as crystal field strength and exchange coupling from X-ray excitation at both the metal and ligand sites. By comparison to X-ray absorption spectra of neutral, solvated Mn(acac)2,3 complexes, we also show that the effect of coordination on the L3 excitation energy, routinely used to identify oxidation states, can contribute about 40-50% to the observed shift, which for the current study is 1.9 eV per oxidation state.

8.
Chemistry ; 29(13): e202203481, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36478608

ABSTRACT

Understanding how charge and energy, as well as protons and hydrogen atoms, are transferred in molecular systems as a result of an electronic excitation is fundamental for understanding the interaction between ionizing radiation and biological matter on the molecular level. To localize the excitation at the atomic scale, it was chosen to target phosphorus atoms in the backbone of gas-phase oligonucleotide anions and cations, by means of resonant photoabsorption at the L- and K-edges. The ionic photoproducts of the excitation process were studied by a combination of mass spectrometry and X-ray spectroscopy. The combination of absorption site selectivity and photoproduct sensitivity allowed the identification of X-ray spectral signatures of specific processes. Moreover, charge and/or energy as well as H transfer from the backbone to nucleobases has been directly observed. Although the probability of one versus two H transfer following valence ionization depends on the nucleobase, ionization of sugar or phosphate groups at the carbon K-edge or the phosphorus L-edge mainly leads to single H transfer to protonated adenine. Moreover, our results indicate a surprising proton-transfer process to specifically form protonated guanine after excitation or ionization of P 2p electrons.


Subject(s)
Hydrogen , Oligonucleotides , Protons , DNA/chemistry , Spectrum Analysis
9.
Angew Chem Int Ed Engl ; 61(50): e202211555, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36197000

ABSTRACT

A stable salt of the metalloradical [Ni(C6 H6 )2 ]+ hitherto unknown in the condensed phase was synthesized from [Ni(CO)4 ]+ [WCA]- and benzene ([WCA]- =[F{Al(ORF )3 }2 ]- ; RF =C(CF3 )3 ). Single crystal XRD reveals a remarkable asymmetrically η3 ,η6 -slipped sandwich structure. The magnetic properties of the [Ni(C6 H6 )2 ]+ cation were determined in solution and in the gas phase. Oxidation with the synergistic Ag+ /0.5 l2 system led to the salt [Ni(C6 H6 )2 ]2+ ([WCA]- )2 . All products were fully characterized by means of IR, Raman, NMR/EPR, single crystal and powder XRD.

10.
Phys Chem Chem Phys ; 24(33): 19890-19894, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35959850

ABSTRACT

Oxidation states are integer in number but dn configurations of transition metal centers vary continuously in polar bonds. We quantify the shifts of the iron L3 excitation energy, within the same formal oxidation state, in a systematic L-edge X-ray absorption spectroscopy study of diatomic gas-phase iron(II) halide cations, [FeX]+,where X = F, Cl, Br, I. These shifts correlate with the electronegativity of the halogen, and are attributed exclusively to a fractional increase in population of 3d-derived orbitals along the series as supported by charge transfer multiplet simulations and density functional theory calculations. We extract an excitation energy shift of 420 meV ± 60 meV spanning the full range of possible 3d occupations between the most ionic bond in [FeF]+ and covalently bonded [FeI]+.

11.
Angew Chem Int Ed Engl ; 61(38): e202207688, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35818987

ABSTRACT

Although the highest possible oxidation states of all transition elements are rare, they are not only of fundamental interest but also relevant as potentially strong oxidizing agents. In general, the highest oxidation states are found in the electron-rich late transition elements of groups 7-9 of the periodic table. Rhodium is the first element of the 4d transition metal series for which the highest known oxidation state does not equal its group number of 9, but reaches only a significantly lower value of +6 in exceptional cases. Higher oxidation states of rhodium have remained elusive so far. In a combined mass spectrometry, X-ray absorption spectroscopy, and quantum-chemical study of gas-phase R h O n + (n=1-4), we identify R h O 3 + as the 1 A 1 ' trioxidorhodium(VII) cation, the first chemical species to contain rhodium in the +7 oxidation state, which is the third-highest oxidation state experimentally verified among all elements in the periodic table.

12.
Phys Chem Chem Phys ; 24(13): 7815-7825, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35297440

ABSTRACT

We present experimental evidence for soft X-ray induced intramolecular hydrogen transfer in the protonated synthetic tri-oligonucleotide d(FUAG) in the gas-phase (FU: fluorouracil). The trinucleotide cations were stored in a cryogenic ion trap and exposed to monochromatic synchrotron radiation. Photoionization and photofragmentation product ion yields were recorded as a function of photon energy. Predominanly glycosidic bond cleavage leading to formation of nucleobase-related fragments is observed. In most cases, glycosidic bond cleavage is accompanied by single or double hydrogen transfer. The combination of absorption-site-sensitive soft X-ray spectroscopy with fragment specific mass spectrometry allows to directly relate X-ray absorption site and fragmentation site. We observe pronounced resonant features in the competition between single and double hydrogen transfer towards nucleobases. A direct comparison of experimental data with time-dependent density functional theory calculations, using short range corrected hybrid functionals, reveal that these hydrogen transfer processes are universal and not limited to population of particular excited states localized at the nucleobases. Instead, hydrogen transfer can occur upon X-ray absorption in any nucleobase and in the DNA backbone. Resonances seem to occur because of site-selective suppression of hydrogen transfer channels. Furthermore, non-covalent interactions of the optimized ground state geometries were investigated to identify intramolecular hydrogen bonds along which hydrogen transfer is most likely.


Subject(s)
DNA , Hydrogen , Cations/chemistry , DNA/chemistry , Hydrogen Bonding , Mass Spectrometry
13.
J Phys Chem A ; 126(9): 1496-1503, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35213156

ABSTRACT

We demonstrate site-specific X-ray induced fragmentation across the sulfur L-edge of protonated cystine, the dimer of the amino acid cysteine. Ion yield NEXAFS were performed in the gas phase using electrospray ionization (ESI) in combination with an ion trap. The interpretation of the sulfur L-edge NEXAFS spectrum is supported by Restricted Open-Shell Configuration Interaction (ROCIS) calculations. The fragmentation pathway of triply charged cystine ions was modeled by Molecular Dynamics (MD) simulations. We have deduced a possible pathway of fragmentation upon excitation and ionization of S 2p electrons. The disulfide bridge breaks for resonant excitation at lower photon energies but remains intact upon higher energy resonant excitation and upon ionization of S 2p. The larger fragments initially formed subsequently break into smaller fragments.


Subject(s)
Cysteine , Cystine , Cysteine/chemistry , Cystine/chemistry , Electrons , Ions , Spectrometry, Mass, Electrospray Ionization , X-Rays
14.
Phys Chem Chem Phys ; 24(6): 3598-3610, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35103264

ABSTRACT

Manganese-oxo species catalyze key reactions, including C-H bond activation or dioxygen formation in natural photosynthesis. To better understand relevant reaction intermediates, we characterize electronic states and geometric structures of [MnOn]+ manganese-oxo complexes that represent a wide range of manganese oxidation states. To this end, we apply soft X-ray spectroscopy in a cryogenic ion trap, combined with multiconfigurational wavefunction calculations. We identify [MnO2]+ as a rare high-spin manganese(V) oxo complex with key similarities to six-coordinated manganese(V) oxo systems that are proposed as reaction intermediates in catalytic dioxygen bond formation.


Subject(s)
Manganese Compounds , Manganese , Cations , Oxides , X-Rays
15.
Chemistry ; 28(2): e202102592, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34806228

ABSTRACT

The phenomenon of single molecule magnet (SMM) behavior of mixed valent Mn12 coordination clusters of general formula [MnIII 8 MnIV 4 O12 (RCOO)16 (H2 O)4 ] had been exemplified by bulk samples of the archetypal [MnIII 8 MnIV 4 O12 (CH3 COO)16 (H2 O)4 ] (4) molecule, and the molecular origin of the observed magnetic behavior has found support from extensive studies on the Mn12 system within crystalline material or on molecules attached to a variety of surfaces. Here we report the magnetic signature of the isolated cationic species [Mn12 O12 (CH3 COO)15 (CH3 CN)]+ (1) by gas phase X-ray Magnetic Circular Dichroism (XMCD) spectroscopy, and we find it closely resembling that of the corresponding bulk samples. Furthermore, we report broken symmetry DFT calculations of spin densities and single ion tensors of the isolated, optimized complexes [Mn12 O12 (CH3 COO)15 (CH3 CN)]+ (1), [Mn12 O12 (CH3 COO)16 ] (2), [Mn12 O12 (CH3 COO)16 (H2 O)4 ] (3), and the complex in bulk geometry [MnIII 8 MnIV 4 O12 (CH3 COO)16 (H2 O)4 ] (5). The found magnetic fingerprints - experiment and theory alike - are of a remarkable robustness: The MnIV 4 core bears almost no magnetic anisotropy while the surrounding MnIII 8 ring is highly anisotropic. These signatures are truly intrinsic properties of the Mn12 core scaffold within all of these complexes and largely void of the environment. This likely holds irrespective of bulk packing effects.

16.
Phys Chem Chem Phys ; 23(32): 17166-17176, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34346432

ABSTRACT

As an example of symmetry breaking in NEXAFS spectra of protonated species we present a high resolution NEXAFS spectrum of protonated dinitrogen, the diazynium ion N2H+. By ab initio calculations we show that the spectrum consists of a superposition of two nitrogen 1s absorption spectra, each including a π* band, and a nitrogen 1s to H+ charge transfer band followed by a weak irregular progression of high energy excitations. Calculations also show that, as an effect of symmetry breaking by protonation, the π* transitions are separated by 0.23 eV, only slightly exceeding the difference in the corresponding dark (symmetry forbidden) and bright (symmetry allowed) core excitations of neutral N2. By DFT and calculations and vibrational analysis, the complex π* excitation band of N2H+ is understood as due to the superposition of the significantly different vibrational progressions of excitations from terminal and central nitrogen atoms, both leading to bent final state geometries. We also show computationally that the electronic structure of the charge transfer excitation smoothly depends on the nitrogen-proton distance and that there is a clear extension of the spectra going from infinity to close nitrogen-proton distance where fine structures show some, although not fully detailed, similarities. An interesting feature of partial localization of the nitrogen core orbitals, with a strong, non-monotonous, variation with nitrogen-proton distance could be highlighted. Specific effects could be unraveled when comparing molecular cation NEXAFS spectra, as represented by recently recorded spectra of N2+ and CO+, and spectra of protonated molecules as represented here by the N2H+ ion. Both types containing rich physical effects not represented in NEXAFS of neutral molecules because of the positive charge, whereas protonation also breaks the symmetry. The effect of the protonation on dinitrogen can be separated in charge, which extends the high-energy part of the spectrum, and symmetry-breaking, which is most clearly seen in the low-energy π* transition.

17.
Chem Sci ; 12(11): 3966-3976, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-34163667

ABSTRACT

The local electronic structure of the metal-active site and the deexcitation pathways of metalloporphyrins are crucial for numerous applications but difficult to access by commonly employed techniques. Here, we applied near-edge X-ray absorption mass spectrometry and quantum-mechanical restricted active space calculations to investigate the electronic structure of the metal-active site of the isolated cobalt(iii) protoporphyrin IX cation (CoPPIX+) and its deexcitation pathways upon resonant absorption at the cobalt L-edge. The experiments were carried out in the gas phase, thus allowing for control over the chemical state and molecular environment of the metalloporphyrin. The obtained mass spectra reveal that resonant excitations of CoPPIX+ at the cobalt L3-edge lead predominantly to the formation of the intact radical dication and doubly charged fragments through losses of charged and neutral side chains from the macrocycle. The comparison between experiment and theory shows that CoPPIX+ is in a 3A2g triplet ground state and that competing excitations to metal-centred non-bonding and antibonding σ* molecular orbitals lead to distinct deexcitation pathways.

18.
Phys Chem Chem Phys ; 23(20): 11900-11906, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33997879

ABSTRACT

The conformation and the electronic structure of gas-phase oligonucleotides depends strongly on the protonation site. 5'-d(FUAG) can either be protonated at the A-N1 or at the G-N7 position. We have stored protonated 5'-d(FUAG) cations in a cryogenic ion trap held at about 20 K. To identify the protonation site and the corresponding electronic structure, we have employed soft X-ray absorption spectroscopy at the nitrogen K-edge. The obtained spectra were interpreted by comparison to time-dependent density functional theory calculations using a short-range exchange correlation functional. Despite the fact that guanine has a significantly higher proton affinity than adenine, the agreement between experiment and theory is better for the A-N1 protonated system. Furthermore, an inverse site sensitivity is observed in which the yield of the nucleobase fragments that contain the absorption site appears substantially reduced, which could be explained by non-statistical fragmentation processes, localized on the photoabsorbing nucleobase.


Subject(s)
DNA/chemistry , Electrons , Nucleic Acid Conformation , Protons , X-Ray Absorption Spectroscopy
19.
J Am Soc Mass Spectrom ; 32(3): 670-684, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33573373

ABSTRACT

Near-edge X-ray absorption mass spectrometry (NEXAMS) is an action-spectroscopy technique of growing interest for investigations into the spatial and electronic structure of biomolecules. It has been used successfully to give insights into different aspects of the photodissociation of peptides and to probe the conformation of proteins. It is a current question whether the fragmentation pathways are sensitive toward effects of conformational isomerism, tautomerism, and intramolecular interactions in gas-phase peptides. To address this issue, we studied the cationic fragments of cryogenically cooled gas-phase leucine enkephalin ([LeuEnk+H]+) and methionine enkephalin ([MetEnk+H]+) produced upon soft X-ray photon absorption at the carbon, nitrogen, and oxygen K-edges. The interpretation of the experimental ion yield spectra was supported by density-functional theory and restricted-open-shell configuration interaction with singles (DFT/ROCIS) calculations. The analysis revealed several effects that could not be rationalized based on the peptide's amino acid sequences alone. Clear differences between the partial ion yields measured for both peptides upon C 1s → π*(C═C) excitations in the aromatic amino acid side chains give evidence for a sulfur-aromatic interaction between the methionine and phenylalanine side chain of [MetEnk+H]+. Furthermore, a peak associated with N 1s → π*(C═N) transitions, linked to a tautomeric keto-to-enol conversion of peptide bonds, was only present in the photon energy resolved ion yield spectra of [MetEnk+H]+.


Subject(s)
Enkephalins/chemistry , Peptides/chemistry , X-Ray Absorption Spectroscopy/methods , Enkephalin, Leucine/chemistry , Enkephalin, Methionine/chemistry , Models, Molecular , Protein Structure, Secondary
20.
Phys Chem Chem Phys ; 22(28): 16215-16223, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32643725

ABSTRACT

We present and analyze high resolution near edge X-ray absorption fine structure (NEXAFS) spectra of CO+ at the carbon and oxygen K-edges. The spectra show a wealth of features that appear very differently at the two K-edges. The analysis of these features can be divided into three parts; (i) repopulation transition to the open shell orbital - here the C(1s) or O(1s) to 5σ transition, where the normal core hole state is reached from a different initial state and different interaction than in X-ray photoelectron spectroscopy; (ii) spin coupled split valence bands corresponding to C(1s) or O(1s) to π* transitions; (iii) remainder weak and long progressions towards the double ionization potentials containing a manifold of peaks. These parts, none of which has correspondence in NEXAFS spectra of neutral molecules, are dictated by the localization of the singly occupied 5σ orbital, adding a dimension of chemistry to the ionic NEXAFS technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...