Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 59(17): 6819-6826, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32011781

ABSTRACT

Carbapenem-resistant Gram-negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer-membrane or are excluded by efflux mechanisms. Here, we report a cationic block ß-peptide (PAS8-b-PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8-b-PDM12 does not only compromise the integrity of the bacterial outer-membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8-b-PDM12 sensitizes carbapenem- and colistin-resistant GNB to multiple antibiotics in vitro and in vivo. The ß-peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α-peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Peptides/chemistry , Peptides/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Glycosylation , Microbial Sensitivity Tests , Protein Conformation, beta-Strand
2.
Chem Sci ; 11(12): 3171-3179, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-34122822

ABSTRACT

Peptidoglycan is the core component of the bacterial cell wall, which makes it an attractive target for the development of bacterial targeting agents. Intercepting its enzymatic assembly with synthetic substrates allows for labeling and engineering of live bacterial cells. Over the past two decades, small-molecule-based labeling agents, such as antibiotics, d-amino acids or monosaccharides have been developed for probing biological processes in bacteria. Herein, peptidoglycan oligomers, substrates for transglycosylation, are prepared for the first time using a top-down approach, which starts from chitosan as a cheap feedstock. A high efficiency of labeling has been observed in all bacterial strains tested using micromolar substrates. In contrast, uptake into mammalian cells was barely observable. Additional mechanistic studies support a hypothesis of bacteria-specific metabolic labeling rather than non-specific binding to the bacterial surface. Eventually, its practicality in bacterial targeting capability is demonstrated in resistant strain detection and in vivo infection models.

3.
ACS Appl Mater Interfaces ; 9(44): 38288-38303, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29028315

ABSTRACT

Cationic antimicrobial peptides (AMPs) and polymers are active against many multidrug-resistant (MDR) bacteria, but only a limited number of these compounds are in clinical use due to their unselective toxicity. The typical strategy for achieving selective antibacterial efficacy with low mammalian cell toxicity is through balancing the ratio of cationicity to hydrophobicity. Herein, we report a cationic nanoparticle self-assembled from chitosan-graft-oligolysine (CSM5-K5) chains with ultralow molecular weight (1450 Da) that selectively kills bacteria. Further, hydrogen bonding rather than the typical hydrophobic interaction causes the polymer chains to be aggregated together in water into small nanoparticles (with about 37 nm hydrodynamic radius) to concentrate the cationic charge of the lysine. When complexed with bacterial membrane, these cationic nanoparticles synergistically cluster anionic membrane lipids and produce a greater membrane perturbation and antibacterial effect than would be achievable by the same quantity of charge if dispersed in individual copolymer molecules in solution. The small zeta potential (+15 mV) and lack of hydrophobicity of the nanoparticles impedes the insertion of the copolymer into the cell bilayer to improve biocompatibility. In vivo study (using a murine excisional wound model) shows that CSM5-K5 suppresses the growth of methicillin-resistant Staphylococcus aureus (MRSA) bacteria by 4.0 orders of magnitude, an efficacy comparable to that of the last resort MRSA antibiotic vancomycin; it is also noninflammatory with little/no activation of neutrophils (CD11b and Ly6G immune cells). This study demonstrates a promising new class of cationic polymers-short cationic peptidopolysaccharides-that effectively attack MDR bacteria due to the synergistic clustering of, rather than insertion into, bacterial anionic lipids by the concentrated polymers in the resulting hydrogen-bonding-stabilized cationic nanoparticles.


Subject(s)
Nanoparticles , Animals , Anti-Bacterial Agents , Hydrogen Bonding , Methicillin-Resistant Staphylococcus aureus , Mice , Peptides , Polysaccharides
4.
Biomacromolecules ; 18(1): 44-55, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28009508

ABSTRACT

Cationic polymethacrylates are interesting candidates for bacterial disinfectants since they can be made in large-scale by various well-established polymerization techniques such as atom transfer radical polymerization (ATRP). However, they are usually toxic or ineffective in serum and various strategies to improve their biocompatibility or nonfouling property have often resulted in compromised bactericidal activity. Also, star-shaped polymers are less explored than linear polymers for application as antibacterial compounds. In this paper, star polymers with poly[2-(dimethylamino)ethyl methacrylate] (PDMA) as the arms and polyhedral oligomeric silsesquioxane (POSS) as the core (POSS-g-PDMA) were successfully synthesized by ATRP. The minimum inhibition concentrations (MICs) of the synthesized POSS-g-PDMA are in the range of 10-20 µg/mL. POSS-g-PDMA was further modified by various hydrophilization strategies in attempting to reduce hemolysis. With quaternization of POSS-g-PDMA, the antibacterial activities of the obtained quaternary polymers are almost unchanged and the copolymers become relatively nonhemolytic. We also copolymerized sulfobetaine (SB) with POSS-g-PDMA to obtain random and block PDMA-co-PSB arm structures, where the PDMA and poly(sulfobetaine) were the cationic and zwitterionic blocks, respectively. The random cationic-zwitterionic POSS-g-(PDMA-r-PSB) copolymers showed poor antibacterial activity, while the block POSS-g-(PDMA-b-PSB) copolymers retained the antibacterial and hemolytic activity of the pristine POSS-g-PDMA. Further, the block copolymers of POSS-g-(PDMA-b-PSB) showed enhanced antifouling property and serum stability as seen by their nanoparticle size stability in the presence of serum and reduced red blood cell aggregation; the POSS-g-(PDMA-b-PSB) also somewhat retained its MIC in blood unlike the quaternized or random zwitterionic copolymers. The antibacterial kinetics study showed that Escherichia coli can be killed within 30 min by both random and block copolymers of POSS-g-(PDMA-co-PSB). Finally, our POSS star polymers showed low toxicity to zebrafish embryo and could be potentially used in aquaculture antibacterial applications.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Betaine/analogs & derivatives , Methacrylates/chemistry , Polymers/chemical synthesis , Polymers/pharmacology , Quaternary Ammonium Compounds/chemistry , Animals , Betaine/chemistry , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/drug effects , Escherichia coli/drug effects , Hemolysis/drug effects , Humans , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Zebrafish/embryology
5.
Chem Sci ; 6(8): 4537-4549, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-29142702

ABSTRACT

The synthesis of a new small library of quinoxaline-containing peptides is described. After cytotoxic evaluation in four human cancer cell lines, as well as detailed biological studies, it was found that the most active compound, RZ2, promotes the formation of acidic compartments, where it accumulates, blocking the progression of autophagy. Further disruption of the mitochondrial membrane potential and an increase in mitochondrial ROS was observed, causing cells to undergo apoptosis. Given its cytotoxic activity and protease-resistant features, RZ2 could be a potential drug candidate for cancer treatment and provide a basis for future research into the crosstalk between autophagy and apoptosis and its relevance in cancer therapy.

6.
ACS Med Chem Lett ; 5(1): 45-50, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24900772

ABSTRACT

In the search for new drug candidates for DNA recognition, affinity and sequence selectivity are two of the most important features. NMe-azathiocoraline, a synthetic antitumor bisintercalator derived from the natural marine product thiocoraline, shows similar potency to the parent compound, as well as possessing enhanced stability. Analysis of the DNA-binding selectivity of NMe-azathiocoraline by DNase I footprinting using universal substrates with all 136 tetranucleotides and all possible symmetrical hexanucleotide sequences revealed that, although this ligand binds to all CpG steps with lower affinities than thiocoraline, it displays additional binding to AT-rich sites. Moreover, fluorescence melting studies showed a strong interaction of the synthetic molecule with CACGTG and weaker binding to ACATGT and AGATCT. These findings demonstrate that NMe-azathiocoraline has the same mode of action as thiocoraline, mimicking its DNA-binding selectivity despite the substitution of its thioester bonds by NMe-amide bridges.

7.
Org Lett ; 9(20): 3985-8, 2007 Sep 27.
Article in English | MEDLINE | ID: mdl-17764191

ABSTRACT

An unprecedented synthesis of 8-substituted-borondipyrromethenes is described starting from 8-thiomethylbodipy 1. Aryl, heteroaryl, alkenyl, and organometallic boronic acids smoothly reacted with 1 in the presence of a catalytic amount of Pd(0) and a stoichiometric amount of Cu(I)-2-thienylcarboxylate under neutral conditions to give the corresponding Bodipy analogues in good to quantitative yields (20 examples). A remarkable reactivity was observed in some cases, e.g., ferrocenylboronic acid gave the product in 98% isolated yield after only 10 min at 55 degrees C.

SELECTION OF CITATIONS
SEARCH DETAIL
...