Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 345: 118674, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37586169

ABSTRACT

Grappling with the global ecological concern of the Aral Sea disaster, Uzbekistan exemplifies the urgent necessity of unravelling and addressing the complex Water-Energy-Food-Ecology (WEFE) nexus conflicts in arid regions, a critical task yet largely uncharted. Through the strategic process of 'Indicator Articulation - Weight Calibration - Nexus Coordination Quantification - Correlational Analysis', this work has developed a tailored framework that integrates a novel, context-specific indicator system, enabling an illumination of the intricate dynamics within the WEFE nexus in arid regions. During 2000-2018, the WEFE Nexus in Uzbekistan showed low-level coordination, indicating systemic imbalances. The Aral Sea crisis was the central disruptor, resulting in a moderately disordered ecological subsystem. Concurrently, disorder was observed in water resources, signaling inadequate management and potential overutilization. Furthermore, Coordination for energy and food were barely coordinated and under primary coordination respectively, underlining critical challenges in energy efficiency and food security. Over the last two decades, the WEFE Nexus has evolved towards a tighter interlinkage, yet the stability of this coupling coordination has experienced increased fluctuations, indicating that Uzbekistan's policies in the WEFE subsystems have been less stable in the last two decades and are in need of further adjustment and improvement. To address the challenges, we recommend a comprehensive approach that integrates technological, infrastructure, and policy solutions is needed. Specifically, promoting water-saving irrigation technology, renewing and maintaining outdated energy facilities, and raising public awareness of ecological protection are part of the essential measures. Furthermore, alleviating the contradiction between economic growth and ecological conservation remains a major challenge. Collectively, our constructed WEFE Nexus framework, with its extendable and context-specific indicators, holds significant potential for broad application in the analysis of multi-sectoral sustainability, particularly within arid regions globally, and forms a solid foundation for the formulation of effective, targeted policies and sustainable development strategies.


Subject(s)
Water Supply , Water , Uzbekistan , Food , Sustainable Development
2.
Sci Total Environ ; 845: 157203, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35817104

ABSTRACT

The massive desiccation of the Aral Sea, the fourth largest lake in the world, has led to severe ecological problems, expansion of cropland was thought to be the main factor driving that shrinkage. But this study performed a long-term land cover and use change assessment for Aral Sea Basin (ASB) to show that the cropland has stopped expanding in 2000, of which the cropland in the ASB plain area has decreased significantly (-140 km2/year) from 2001 to 2019. By contrast, this study finds the hydrological cycle in the ASB has intensified through a spatial and temporal scale approach based on Earth observation. Specifically, there is a 7.21 % (+304.56 × 108 m3) increase in annual total precipitation and a 10.13 % (+376.21 × 108 m3) increase in annual total actual evapotranspiration (AET) for the whole ASB during 1980-2019. In particular, the total annual AET in the ASB plain area has increased by 37.81 % (+718.92 × 108 m3), which almost depletes the water that should have flowed into the Aral Sea. Therefore, the Aral Sea shrank by 5625 × 108 m3 (or 42,944.32km2) from 1980 to 2019. Changing climate and increasing AET have accelerated the desiccation of the Aral Sea, and the expansion of cropland is no longer the main factor of that shrinkage. After more water was conserved in the ASB plain area, evapotranspiration plays a more vital role in the Aral Sea shrinkage. Reducing AET and unproductive water losses are key initiatives in future projects to save the Aral Sea. This study explores the causes of Aral Sea shrinkage from an integrated perspective of climate-land-water-ecological change across the ASB, bridging the limitations of previous studies that have focused on Aral Sea waters and subbasins.


Subject(s)
Climate Change , Lakes , Seawater , Water
3.
Article in English | MEDLINE | ID: mdl-35055563

ABSTRACT

Lower reaches of the Amu Darya River Basin (LADB) is one of the typical regions which is facing the problem of water shortage in Central Asia. During the past decades, water resources demand far exceeds that supplied by the mainstream of the Amu Darya River, and has resulted in a continuous decrease in the amount of water flowing into the Aral Sea. Clarifying the dynamic relationship between the water supply and demand is important for the optimal allocation and sustainable management of regional water resources. In this study, the relationship and its variations between the water supply and demand in the LADB from the 1970s to 2010s were analyzed by detailed calculation of multi-users water demand and multi-sources water supply, and the water scarcity indices were used for evaluating the status of water resources utilization. The results indicated that (1) during the past 50 years, the average total water supply (TWS) was 271.88 × 108 m3/y, and the average total water demand (TWD) was 467.85 × 108 m3/y; both the volume of water supply and demand was decreased in the LADB, with rates of -1.87 × 108 m3/y and -15.59 × 108 m3/y. (2) percentages of the rainfall in TWS were increased due to the decrease of inflow from the Amu Darya River; percentage of agriculture water demand was increased obviously, from 11.04% in the 1970s to 44.34% in 2010s, and the water demand from ecological sector reduced because of the Aral Sea shrinking. (3) the supply and demand of water resources of the LADB were generally in an unbalanced state, and water demand exceeded water supply except in the 2010s; the water scarcity index decreased from 2.69 to 0.94, indicating the status changed from awful to serious water scarcity. A vulnerable balanced state has been reached in the region, and that water shortages remain serious in the future, which requires special attention to the decision-makers of the authority.


Subject(s)
Rivers , Water Supply , Asia, Central , Water , Water Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...