Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 56: 101423, 2022 02.
Article in English | MEDLINE | ID: mdl-34954108

ABSTRACT

OBJECTIVE: Genome-wide association studies identified ORMDL3 as an obesity-related gene, and its expression was negatively correlated with body mass index. However, the precise biological roles of ORMDL3 in obesity and lipid metabolism remain uncharacterized. Here, we investigate the function of ORMDL3 in adipose tissue thermogenesis and high fat diet (HFD)-induced insulin resistance. METHODS: Ormdl3-deficient (Ormdl3-/-) mice were employed to delineate the function of ORMDL3 in brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Glucose and lipid homeostasis in Ormdl3-/- mice fed a HFD were assessed. The lipid composition in adipose tissue was evaluated by mass spectrometry. Primary adipocytes in culture were used to determine the mechanism by which ORMDL3 regulates white adipose browning. RESULTS: BAT thermogenesis and WAT browning were significantly impaired in Ormdl3-/- mice upon cold exposure or administration with the ß3 adrenergic agonist. In addition, compared to WT mice, Ormdl3-/- mice displayed increased weight gain and insulin resistance in response to HFD. The induction of uncoupling protein 1 (UCP1), a marker of thermogenesis, was attenuated in primary adipocytes derived from Ormdl3-/- mice. Importantly, ceramide levels were elevated in the adipose tissue of Ormdl3-/- mice. In addition, the reduction in thermogenesis and increase in body weight caused by Ormdl3 deficiency could be rescued by inhibiting the production of ceramides. CONCLUSION: Our findings suggest that ORMDL3 contributes to the regulation of BAT thermogenesis, WAT browning, and insulin resistance.


Subject(s)
Adipose Tissue, Brown , Ceramides , Insulin Resistance , Membrane Proteins , Thermogenesis , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Ceramides/biosynthesis , Energy Metabolism , Genome-Wide Association Study , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout
2.
Diabetes ; 66(2): 300-313, 2017 02.
Article in English | MEDLINE | ID: mdl-27899484

ABSTRACT

Obesity and obesity-associated diseases are linked to dysregulation of the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway. Identification of the factors that regulate PPARγ expression and activity is crucial for combating obesity. However, the ubiquitin E3 ligases that target PPARγ for proteasomal degradation have been rarely identified, and their functions in vivo have not been characterized. Here we report that CUL4B-RING E3 ligase (CRL4B) negatively regulates PPARγ by promoting its polyubiquitination and proteasomal degradation. Depletion of CUL4B led to upregulation of PPARγ-regulated genes and facilitated adipogenesis. Adipocyte-specific Cul4b knockout (AKO) mice being fed a high-fat diet exhibited increased body fat accumulation that was mediated by increased adipogenesis. However, AKO mice showed improved metabolic phenotypes, including increased insulin sensitivity and glucose tolerance. Correspondingly, there was a decreased inflammatory response in adipose tissues of AKO mice. Genetic inhibition of CUL4B thus appears to phenocopy the beneficial effects of PPARγ agonists. Collectively, this study establishes a critical role of CRL4B in the regulation of PPARγ stability and insulin sensitivity and suggests that CUL4B could be a potential therapeutic target for combating obesity and metabolic syndromes.


Subject(s)
Adipocytes/metabolism , Adipogenesis/genetics , Adipose Tissue/metabolism , Blood Glucose/metabolism , Cullin Proteins/genetics , Insulin Resistance/genetics , Obesity/genetics , PPAR gamma/genetics , Adult , Animals , Chemotaxis , Diet, High-Fat , Female , Flow Cytometry , Glucose Tolerance Test , Humans , Inflammation , Insulin/metabolism , Male , Mice , Mice, Knockout , Middle Aged , Obesity/metabolism , PPAR gamma/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...