Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Appl. Microbiol. Biotechnol. ; 101: 2305–2317, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15419

ABSTRACT

Streptococcus pneumoniae is the main cause of pneumonia, meningitis, and other conditions that kill thousands of children every year worldwide. The replacement of pneumococcal serotypes among the vaccinated population has evidenced the need for new vaccines with broader coverage and driven the research for protein-based vaccines. Pneumococcal surface protein A (PspA) protects S. pneumoniae from the bactericidal effect of human apolactoferrin and prevents complement deposition. Several studies indicate that PspA is a very promising target for novel vaccine formulations. Here we describe a production and purification process for an untagged recombinant fragment of PspA from clade 4 (PspA4Pro), which has been shown to be cross-reactive with several PspA variants. PspA4Pro was obtained using lactose as inducer in Phytone auto-induction batch or glycerol limited fed-batch in 5-L bioreactor. The purification process includes two novel steps: (i) clarification using a cationic detergent to precipitate contaminant proteins, nucleic acids, and other negatively charged molecules as the lipopolysaccharide, which is the major endotoxin; and (ii) cryoprecipitation that eliminates aggregates and contaminants, which precipitate at -20 A degrees C and pH 4.0, leaving PspA4Pro in the supernatant. The final process consisted of cell rupture in a continuous high-pressure homogenizer, clarification, anion exchange chromatography, cryoprecipitation, and cation exchange chromatography. This process avoided costly tag removal steps and recovered 35.3 +/- 2.5% of PspA4Pro with 97.8 +/- 0.36% purity and reduced endotoxin concentration by > 99.9%. Circular dichroism and lactoferrin binding assay showed that PspA4Pro secondary structure and biological activity were preserved after purification and remained stable in a wide range of temperatures and pH values.

2.
Braz. J. Chem. Eng ; 33(3): p. 435-443, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14707

ABSTRACT

The main virulence factor of Streptococcus pneumoniae is the capsular polysaccharide (PS), which is the antigen of all current vaccines that are prepared with PS purified from serotypes prevalent in the population. In this work, three purification strategies were evaluated and a new process was developed for purification of serotype 14 PS (PS14), responsible for 39.8% of diseases in children of 0-6 years old in Brazil. The developed method consists of cell separation by tangential microfiltration, concentration of the microfiltrate by tangential ultrafiltration (50 kDa), diafiltration in the presence of sodium dodecyl sulfate using a 30 kDa ultrafiltration membrane, precipitation with 5% trichloroacetic acid, precipitation with 20% and 60% ethanol, and anion exchange chromatography. The required purity regarding nucleic acids (<= 2%) and proteins (<= 3%) was achieved, resulting in a relative purity of 439 mg PS14/mg nucleic acids and 146 mg PS14/mg proteins. The final polysaccharide recovery was 65%, which is higher than the recovery of the majority of processes described in the literature


Subject(s)
Pulmonary Medicine , Allergy and Immunology , Pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...