Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874103

ABSTRACT

Acetaldehyde is a very relevant atmospheric species whose photodissociation has been extensively studied in the first absorption band both experimentally and theoretically. Very few works have been reported on acetaldehyde photodissociation at higher excitation energies. In this work, the photodissociation dynamics of acetaldehyde is investigated by means of high-level multireference configuration interaction ab initio calculations. Five different fragmentation pathways of acetaldehyde are explored by calculating the potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distances. The excitation energy range covered in the study is up to 10 eV, nearly the ionization energy of acetaldehyde. We intend to rationalize the available experimental results and, in particular, to elucidate why some of the studied fragmentation pathways are experimentally observed in the different excitation energy regions and some others are not. Based on the shape of the calculated potential curves, we are able to explain the main findings of the available experiments, also suggesting possible dynamical dissociation mechanisms in the different energy regions. Thus, the reported potential curves are envisioned as a useful tool to interpret the currently available experiments as well as future ones on acetaldehyde photodissociation at excitation wavelengths in the range studied here.

2.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38364009

ABSTRACT

Bromine atom (Br) reactions lead to ozone depletion in the troposphere and stratosphere. Photodegradation of bromocarbons is one of the main sources of bromine atoms in the atmosphere. Here, we use high-level ab initio methods, including spin-orbit effects, to study the photodissociation of the CH2Br radical. All possible fragmentation pathways, namely CH2Br + hν → CH2 + Br, HCBr + H, and CBr + H2, have been analyzed. Potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distance of each pathway have been calculated. Considering the actinic fluxes of solar irradiation in the troposphere and in the stratosphere in the relevant range of frequencies, it is found that the first five excited states of CH2Br can be accessed from the ground state. Analysis of the potential curves shows that the pathways producing CH2 + Br and HCBr + H can proceed through a fast direct dissociation mechanism, while the pathway leading to CBr + H2 involves much slower dissociation mechanisms like internal conversion between electronic states, predissociation, or tunneling through exit barriers. The main implications are that the two faster channels are predicted to be dominant, and the slower pathway is expected to be less relevant. The tropospheric and stratospheric solar actinic fluxes also allow for further dissociation of the HCBr and CBr fragments, generating additional Br atoms, provided that they survive possible collisions with other atmospheric reagents. Finally, we discuss the possible effect of each of the three CH2Br dissociation pathways on the depletion of atmospheric ozone.

3.
Phys Chem Chem Phys ; 26(8): 6752-6762, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323460

ABSTRACT

The O(3P) + D2 → OD(2Π) + D reaction presents the peculiarity of taking place on two different potential energy surfaces (PESs) of different symmetry, 3A' and 3A'', which become degenerate for collinear configurations where the saddle-point of the reaction is located. The degeneracy is broken for non-collinear approaches with the energy on the 3A' PES rising more abruptly with the bending angle, making the frequency of this mode higher on the 3A' state. Consequently, the 3A' PES should be less reactive than the 3A'' one. Nevertheless, quantum scattering calculations show that the cross section is higher on the 3A' PES for energies close to the classical reaction threshold and rotationless reactant. It is found that the differences between the reactivity on the two PESs are greater for low values of total angular momentum, where the centrifugal barrier is lower and contribute to the higher population of the Π(A') Λ-doublet states of OD at low collision energies. At high collision energies, the Π(A') Λ-doublet state is also preferentially populated. Analysis of the differential cross sections reveals that the preponderance for the Π(A') Λ-doublet at low energies comes from backward scattering, originating from the reaction on the 3A' PES, while at high energies, it proceeds from a different mechanism that leads to sideways scattering on the 3A'' PES and that populates the Π(A') manifold.

4.
Phys Chem Chem Phys ; 25(30): 20365-20372, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37465906

ABSTRACT

Photodissociation of the CH2I radical and the CH2I+ cation is studied by means of high-level ab initio calculations, including spin-orbit effects. Potential-energy curves (PEC) along the dissociating bond distances involved in some fragmentation pathways of these species are computed for the ground and several excited electronic states. Based on the PECs obtained, the possible photodissociation mechanisms are analyzed and suggested. Significant differences are found between the fragmentation dynamics of the neutral radical and that of the cation. While a relatively simple dissociation dynamics is predicted for CH2I, more complex fragmentation mechanisms involving internal conversion and couplings between different excited electronic states are expected for CH2I+. The species studied here are relevant to atmospheric chemistry, and the present work can help to understand better how their photodissociation may affect chemical processes in the atmosphere.

5.
Phys Chem Chem Phys ; 24(12): 7387-7395, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35266503

ABSTRACT

Photodissociation of the vinyl radical through pathways CH2CH → CH2C + H, CH2CH → CHCH + H, and CH2CH → CH2 + CH is investigated by means of high-level ab initio calculations. Potential-energy curves (PECs) along the corresponding dissociating bond distance associated with the ground and several excited electronic states involved in the above fragmentation pathways, as well as the nonadiabatic couplings connecting the different states, are obtained. The findings of several experiments on vinyl photodissociation performed at different excitation wavelengths are analyzed and explained qualitatively in the light of the present PECs. A two-dimensional representation (consisting of radial and angular coordinates to represent one of the H atoms of the CH2 group) is also used to calculate the electronic states. The surfaces obtained reflect a rich variety of conical intersections, exit barriers, and nonadiabatic couplings leading to predissociation in different regions of energy and of the two coordinates, suggesting a complex photodissociation dynamics of the CH2CH → CHCH + H pathway, with rather different fragmentation mechanisms involved. The two-dimensional results also provide interesting information on the mechanism of in-plane hydrogen migration from the CH2 group to the CH one through a high-lying transition state.

6.
Astron Astrophys ; 6482021 Apr.
Article in English | MEDLINE | ID: mdl-34257462

ABSTRACT

The reaction between atomic oxygen and molecular hydrogen is an important one in astrochemistry as it regulates the abundance of the hydroxyl radical and serves to open the chemistry of oxygen in diverse astronomical environments. However, the existence of a high activation barrier in the reaction with ground state oxygen atoms limits its efficiency in cold gas. In this study we calculate the dependence of the reaction rate coefficient on the rotational and vibrational state of H2 and evaluate the impact on the abundance of OH in interstellar regions strongly irradiated by far-UV photons, where H2 can be efficiently pumped to excited vibrational states. We use a recently calculated potential energy surface and carry out time-independent quantum mechanical scattering calculations to compute rate coefficients for the reaction O(3 P) + H2 (v, j) → OH + H, with H2 in vibrational states v = 0-7 and rotational states j = 0-10. We find that the reaction becomes significantly faster with increasing vibrational quantum number of H2, although even for high vibrational states of H2 (v = 4-5) for which the reaction is barrierless, the rate coefficient does not strictly attain the collision limit and still maintains a positive dependence with temperature. We implemented the calculated state-specific rate coefficients in the Meudon PDR code to model the Orion Bar PDR and evaluate the impact on the abundance of the OH radical. We find the fractional abundance of OH is enhanced by up to one order of magnitude in regions of the cloud corresponding to A V = 1.3-2.3, compared to the use of a thermal rate coefficient for O + H2, although the impact on the column density of OH is modest, of about 60%. The calculated rate coefficients will be useful to model and interpret JWST observations of OH in strongly UV-illuminated environments.

7.
J Chem Phys ; 154(14): 144303, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33858147

ABSTRACT

In spite of being spin-forbidden, some enzymes are capable of catalyzing the incorporation of O2(Σg-3) to organic substrates without needing any cofactor. It has been established that the process followed by these enzymes starts with the deprotonation of the substrate forming an enolate. In a second stage, the peroxidation of the enolate formation occurs, a process in which the system changes its spin multiplicity from a triplet state to a singlet state. In this article, we study the addition of O2 to enolates using state-of-the-art multi-reference and single-reference methods. Our results confirm that intersystem crossing is promoted by stabilization of the singlet state along the reaction path. When multi-reference methods are used, large active spaces are required, and in this situation, semistochastic heat-bath configuration interaction emerges as a powerful method to study these multi-configurational systems and is in good agreement with PNO-LCCSD(T) when the system is well-represented by a single-configuration.

8.
Phys Chem Chem Phys ; 21(45): 25389-25396, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31709441

ABSTRACT

One of the most relevant features of the O(3P) + H2 reaction is that it occurs on two different potential energy surfaces (PESs) of symmetries A' and A'' that correlate reactants and products. The respective saddle points, which correspond to a collinear arrangement, are the same for both PESs, whilst the barrier height rises more abruptly on the 3A' PES than on the 3A'' PES. Accordingly, the reactivity on the 3A'' PES should be always higher than on the 3A' PES. In this work, we present accurate quantum-scattering calculations showing that this is not always the case for rotationless reactants, where dynamical factors near the reaction threshold cause the 3A' PES to dominate at energies around the barrier. Further calculation of cross sections and Λ-doublet populations has allowed us to establish how the reaction mechanism changes from the deep tunneling regime to hyperthermal energies.

9.
J Phys Chem A ; 123(37): 7920-7931, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31461272

ABSTRACT

In the past decade, ring polymer molecular dynamics (RPMD) has emerged as a very efficient method to determine thermal rate coefficients for a great variety of chemical reactions. This work presents the application of this methodology to study the O(3P) + HCl reaction, which constitutes a stringent test for any dynamical calculation due to rich resonant structure and other dynamical features. The rate coefficients, calculated on the 3A' and 3A″ potential energy surfaces (PESs) by Ramachandran and Peterson [ J. Chem. Phys. 2003 , 119 , 9590 ], using RPMD and quasiclassical trajectories (QCT) are compared with the existing experimental and the quantum mechanical (QM) results by Xie et al. [ J. Chem. Phys. 2005 122 , 014301 ]. The agreement is very good at T > 600 K, although RPMD underestimates rate coefficients by a factor between 4 and 2 in the 200-500 K interval. The origin of these discrepancies lies in the large contribution from tunneling on the 3A″ PES, which is enhanced by resonances due to quasibound states in the van der Waals wells. Although tunneling is fairly well accounted for by RPMD even below the crossover temperature, the effect of resonances, a long-time effect, is not included in the methodology. At the highest temperatures studied in this work, 2000-3300 K, the RPMD rate coefficients are somewhat larger than the QM ones, but this is shown to be due to limitations in the QM calculations and the RPMD are believed to be more reliable.

10.
Phys Chem Chem Phys ; 21(26): 14012-14022, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-30638224

ABSTRACT

It is common knowledge that integral and differential cross sections (DCSs) are strongly dependent on the spatial distribution of the molecular axis of the reactants. Hence, by controlling the axis distribution, it is possible to either promote or hinder the yield of products into specific final states or scattering angles. This idea has been successfully implemented in experiments by polarizing the internuclear axis before the reaction takes place, either by manipulating the rotational angular distribution or by the Stark effect in the presence of an orienting field. When there is a dominant reaction mechanism, characterized by a set of impact parameters and angles of attack, it is expected that a preparation that helps the system to reach the transition state associated with that mechanism will promote the reaction, whilst a different preparation would generally impair the reaction. However, when two or more competing mechanisms via interference contribute to the reaction into specific scattering angles and final states, it is not evident which would be the effect of changing the axis preparation. To address this problem, throughout this article we have simulated the effect that different experimental preparations have on the DCSs for the H + D2 reaction at relatively high energies, for which it has been shown that several competing mechanisms give rise to interference that shapes the DCS. To this aim, we have extended the formulation of the polarization dependent DCS to calculate polarization dependent generalized deflection functions of ranks greater than zero. Our results show that interference is very sensitive to changes in the internuclear axis preparation, and that the shape of the DCS can be controlled exquisitely.

11.
J Phys Chem A ; 122(10): 2739-2750, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29443528

ABSTRACT

This work presents scattering calculations for the O(3 P) + N2(1Σ) → NO(2Π) + N(4S) and for the O(3 P) + HCl(1Σ) → OH(2Π) + Cl(2P) reactions with a focus on the prediction of the Λ-doublet populations in which NO and OH are produced. Both reactions can take place on two competing potential energy surfaces of symmetries 3 A' and 3 A″ that correlate reagents with products but with very distinct topographies. As a result, they exhibit very different dynamical behaviors and total reactivity. Using a method that relates the reaction yield on the two competing surfaces to the Λ-doublet populations through the explicit consideration of the stereodynamics of the reaction, we predict that the population of NO and OH on the two Λ-doublet sates is surprisingly similar for both systems. These results contradict the model that assumes that collisions on the 3 A' and 3 A″ would give rise to products in the Π( A') and Π( A″) states, respectively.

12.
Phys Chem Chem Phys ; 19(46): 31245-31254, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29143005

ABSTRACT

The electronic states and the spin-orbit couplings between them involved in the photodissociation process of the radical molecules CH3X, CH3X → CH3 + X (X = O, S), taking place after the Ã(2A1) ← X[combining tilde](2E) transition, have been investigated using highly correlated ab initio techniques. A two-dimensional representation of both the potential-energy surfaces (PESs) and the couplings is generated. This description includes the C-X dissociative mode and the CH3 umbrella mode. Spin-orbit effects are found to play a relevant role in the shape of the excited state potential-energy surfaces, particularly in the CH3S case where the spin-orbit couplings are more than twice more intense than in CH3O. The potential surfaces and couplings reported here for the present set of electronic states allow for the first complete description of the above photodissociation process. The different photodissociation mechanisms are analyzed and discussed in light of the results obtained.

13.
Braz. j. biol ; 77(4): 745-751, Nov. 2017. tab, graf
Article in English | LILACS | ID: biblio-888822

ABSTRACT

Abstract Chromosome stoichiometry, a form of genetic plasticity, specifically refers to variation in the standard diploid genomic composition of an individual or species. In the present work, freshwater planarians (Girardia schubarti) were analyzed to recognize variations in chromosomal stoichiometry especially of complete ploidal change between specimens, within specimens and between cells within specimens and any relations they might have with selected components of phenotypic plasticity. Homoploid polyploids for the group reached rational scalar multiples (e.g. tetraploids) or irrational scalar multiples (e.g. triploids). Karyotypic mosaics emerged where individual cells presented polyploid multiples in arithmetic and geometric progressions. Ploidal multiplicity, a chromosomal component of stochastic noise, had positive phenotypic effects (increased dimensions) on morphologic criteria of body length, body width and dorsal surface reflecting a significant genotypic plasticity (GP) and robust phenotypic plasticity (PP). Variable but significant association of genotypic plasticity with robust phenotypic variance suggests kinetics of phenotypic homeostasis that is species-specific permitting phenotypic adaptability to environmental variables by means of GP. That association is diminished, deactivated or lost in more advanced and more complex organisms.


Resumo A estequiometria cromossômica, uma forma de plasticidade genotípica, representa variações na composição genômica diploide de um indivíduo ou espécie. Planárias límnicas (Girardia schubarti) foram analisadas para verificar a estequiometria cromossômica, especialmente alterações na ploidia entre espécimes, em cada espécime e entre células do mesmo espécime, além de relações dessas alterações com a plasticidade fenotípica. Espécimes poliploides homoploides apresentaram múltiplos escalares racionais ou irracionais, tais como triploides. Mosaicos cariotípicos ocorreram quando células apresentaram poliploides múltiplos em progressões aritméticas e geométricas. Nas planárias estudadas, a multiplicidade ploidal, um componente cromossômico de ruído estocástico, apresentou efeitos fenotípicos positivos, causando aumento das dimensões dos indivíduos, tais como comprimento corporal, largura do corpo e superfície dorsal, indicando plasticidade genotípica (GP) significativa e plasticidade fenotípica (PP) robusta. Associações significativas da plasticidade genotípica com variâncias fenotípicas robustas, embora variáveis, sugerem que a homeostase fenotípica, a qual é espécie-específica, possibilita adaptações a variáveis ambientais através da GP. Tal associação apresenta-se reduzida, desativada ou perdida em organismos mais complexos.


Subject(s)
Animals , Polyploidy , Turbellaria/genetics , Genetic Variation , Phenotype , Brazil , Chromosomes
14.
Mon Not R Astron Soc ; 469(1): 612-620, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28690343

ABSTRACT

We present a detailed theoretical study of the rotational excitation of CH+ due to reactive and nonreactive collisions involving C+(2P), H2, CH+, H and free electrons. Specifically, the formation of CH+ proceeds through the reaction between C+(2P) and H2(νH2 = 1, 2), while the collisional (de)excitation and destruction of CH+ is due to collisions with hydrogen atoms and free electrons. State-to-state and initial-state-specific rate coefficients are computed in the kinetic temperature range 10-3000 K for the inelastic, exchange, abstraction and dissociative recombination processes using accurate potential energy surfaces and the best scattering methods. Good agreement, within a factor of 2, is found between the experimental and theoretical thermal rate coefficients, except for the reaction of CH+ with H atoms at kinetic temperatures below 50 K. The full set of collisional and chemical data are then implemented in a radiative transfer model. Our Non-LTE calculations confirm that the formation pumping due to vibrationally excited H2 has a substantial effect on the excitation of CH+ in photon-dominated regions. In addition, we are able to reproduce, within error bars, the far-infrared observations of CH+ toward the Orion Bar and the planetary nebula NGC 7027. Our results further suggest that the population of νH2 = 2 might be significant in the photon-dominated region of NGC 7027.

15.
Braz J Biol ; 77(4): 745-751, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28614425

ABSTRACT

Chromosome stoichiometry, a form of genetic plasticity, specifically refers to variation in the standard diploid genomic composition of an individual or species. In the present work, freshwater planarians (Girardia schubarti) were analyzed to recognize variations in chromosomal stoichiometry especially of complete ploidal change between specimens, within specimens and between cells within specimens and any relations they might have with selected components of phenotypic plasticity. Homoploid polyploids for the group reached rational scalar multiples (e.g. tetraploids) or irrational scalar multiples (e.g. triploids). Karyotypic mosaics emerged where individual cells presented polyploid multiples in arithmetic and geometric progressions. Ploidal multiplicity, a chromosomal component of stochastic noise, had positive phenotypic effects (increased dimensions) on morphologic criteria of body length, body width and dorsal surface reflecting a significant genotypic plasticity (GP) and robust phenotypic plasticity (PP). Variable but significant association of genotypic plasticity with robust phenotypic variance suggests kinetics of phenotypic homeostasis that is species-specific permitting phenotypic adaptability to environmental variables by means of GP. That association is diminished, deactivated or lost in more advanced and more complex organisms.


Subject(s)
Genetic Variation , Polyploidy , Turbellaria/genetics , Animals , Brazil , Chromosomes , Phenotype
16.
Astrophys J ; 850(1)2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29880977

ABSTRACT

Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. k values greatly increase from 2.1×10-11 cm3 s-1 at 107 K to 1.2×10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented.

17.
Nat Commun ; 7: 13439, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27834381

ABSTRACT

In the last decade, the development of theoretical methods has allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the Λ-doublet states produced by chemical reactions. In particular, recent measurements of the OD(2Π) product of the O(3P)+D2 reaction have shown a clear preference for the Π(A') Λ-doublet states, in apparent contradiction with ab initio calculations, which predict a larger reactivity on the A'' potential energy surface. Here we present a method to calculate the Λ-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental Λ-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that the propensity of the Π(A') state is a consequence of the different mechanisms of the reaction on the two concurrent potential energy surfaces.

18.
Phys Chem Chem Phys ; 18(48): 33195-33203, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27892569

ABSTRACT

The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states.

19.
Braz. j. biol ; 76(2): 476-494, Apr.-June 2016. tab, graf
Article in English | LILACS | ID: lil-781401

ABSTRACT

Abstract Microturbellarians typically belong to the benthos and may occur in a wide variety of environments. They are abundant in freshwater and marine ecosystems and may occur in moist terrestrial habitats. However, turbellarians are seldom taken into account in studies of biodiversity. Most studies on Brazilian microturbellarians had taxonomical purposes and were done in the years 1940-1950. Thus, information on their occurrence and ecological aspects are dispersed throughout several papers. We intend here to summarize the biogeographical distribution and ecological aspects of microturbellarians recorded for Brazil, indicating the main gaps in their knowledge and possible actions to enhance studies on this group. There are 239 species of microturbellarians registered for Brazil, with records distributed in 12 states. However, just three states located in southern Brazil have records of 94% of microturbellarian species. Thus, knowledge on the systematics and geographical distribution of Brazilian microturbellarians clearly reflect the scientific activity over many years or decades in two states of southeastern and southern Brazil. Considering the scant information on this group in Brazil, which is also the situation of the Neotropical microturbellarians in general, some actions should be proposed. First, it would be necessary to sample in the diverse biomes, as well as in the various river and sea basins, based on standardized sampling protocols. Second, it would be necessary to encourage diverse research groups to include microturbellarians and/or turbellarians in general into biodiversity inventories and studies on community structure of invertebrates. Third, it is necessary to increase the number of research groups on microturbellarians, in order to augment the studies on their morphology, systematics, and ecology. Considering their abundance, species richness and ecological importance in aquatic environments, despite some peculiarities regarding their sampling, sorting and identification procedures, the challenge to study microturbellarians and enhance knowledge about them in Brazilian ecosystems should be faced.


Resumo Microturbelários são tipicamente bentônicos e podem ocorrer em uma ampla variedade de ambientes. São abundantes em ecossistemas marinhos e de água doce, podendo ocorrer em ambientes terrestres úmidos. Entretanto, turbelários raramente são considerados em estudos de diversidade. A maioria dos estudos sobre microturbelários brasileiros tiveram propósito taxonômico e foram realizados nos anos 1940-1950. Assim, informações sobre ocorrência e aspectos ecológicos estão dispersos em diversos artigos. O objetivo deste trabalho é sumarizar a distribuição biogeográfica e aspectos ecológicos dos microturbelários registrados para o Brasil, indicando as principais lacunas do conhecimento e possíveis ações para ampliar estudos sobre esse grupo. Há 239 espécies de microturbelários registradas no Brasil, com registros distribuídos em 12 estados. No entanto, 94% das espécies de microturbelários foram registradas em apenas três estados localizados no sul e sudeste do Brasil. Assim, o conhecimento sobre a sistemática e distribuição geográfica dos microturbelários claramente reflete as atividades científicas realizadas por muitos anos ou mesmo décadas em dois estados do sudeste e sul do Brasil. Considerando as escassas informações existentes sobre esse grupo no Brasil, assim como a situação dos microturbelários neotropicais em geral, algumas ações devem ser propostas. Primeiramente, é necessário realizar amostragens em diversos biomas, assim como nas várias bacias e regiões hidrográficas marinhas, baseadas em protocolos de amostragem padronizados. Em segundo lugar, faz-se necessário incentivar diversos grupos de pesquisa a incluir microturbelários e/ou turbelários em geral em inventários da biodiversidade e estudos de estrutura de comunidades de invertebrados. Em terceiro lugar, é necessário ampliar o número de grupos de pesquisa em microturbelários, para aumentar os estudos sobre sua morfologia, sistemática e ecologia. Considerando sua abundância, riqueza de espécies e importância ecológica em ambientes aquáticos, apesar de suas peculiaridades de amostragem, triagem e identificação, o desafio de estudar e ampliar o conhecimento sobre microturbelários em ecossistemas brasileiros deve ser enfrentado.


Subject(s)
Animals , Turbellaria/classification , Turbellaria/physiology , Fresh Water/analysis , Fresh Water/microbiology , Brazil , Ecosystem , Biodiversity , Rivers , Ecological and Environmental Phenomena , Hydrobiology/methods , Hydrobiology/statistics & numerical data , Invertebrates/classification
20.
Braz J Biol ; 76(2): 476-94, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26959945

ABSTRACT

Microturbellarians typically belong to the benthos and may occur in a wide variety of environments. They are abundant in freshwater and marine ecosystems and may occur in moist terrestrial habitats. However, turbellarians are seldom taken into account in studies of biodiversity. Most studies on Brazilian microturbellarians had taxonomical purposes and were done in the years 1940-1950. Thus, information on their occurrence and ecological aspects are dispersed throughout several papers. We intend here to summarize the biogeographical distribution and ecological aspects of microturbellarians recorded for Brazil, indicating the main gaps in their knowledge and possible actions to enhance studies on this group. There are 239 species of microturbellarians registered for Brazil, with records distributed in 12 states. However, just three states located in southern Brazil have records of 94% of microturbellarian species. Thus, knowledge on the systematics and geographical distribution of Brazilian microturbellarians clearly reflect the scientific activity over many years or decades in two states of southeastern and southern Brazil. Considering the scant information on this group in Brazil, which is also the situation of the Neotropical microturbellarians in general, some actions should be proposed. First, it would be necessary to sample in the diverse biomes, as well as in the various river and sea basins, based on standardized sampling protocols. Second, it would be necessary to encourage diverse research groups to include microturbellarians and/or turbellarians in general into biodiversity inventories and studies on community structure of invertebrates. Third, it is necessary to increase the number of research groups on microturbellarians, in order to augment the studies on their morphology, systematics, and ecology. Considering their abundance, species richness and ecological importance in aquatic environments, despite some peculiarities regarding their sampling, sorting and identification procedures, the challenge to study microturbellarians and enhance knowledge about them in Brazilian ecosystems should be faced.


Subject(s)
Fresh Water , Turbellaria , Animals , Biodiversity , Brazil , Ecological and Environmental Phenomena , Ecosystem , Fresh Water/analysis , Fresh Water/microbiology , Hydrobiology/methods , Hydrobiology/statistics & numerical data , Invertebrates/classification , Rivers , Turbellaria/classification , Turbellaria/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...