Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Mol Immunol ; 168: 10-16, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368725

ABSTRACT

Complement alternative pathway (AP) dysregulation drives C3 glomerulopathy (C3G), a rare renal disorder characterized by glomerular C3 deposition and glomerular damage, for which no effective treatments are available. Blockade of complement C3 is emerging as a viable therapeutic option. In an earlier study we showed that SLN500, a small interfering RNA targeting liver C3 synthesis, was able to limit AP dysregulation and glomerular C3d deposits in mice with partial factor H (FH) deficiency (Cfh+/- mice). Here, we assessed the pharmacological effects of SLN501 - an optimized SLN500 version - in mice with complete FH deficiency (Cfh-/- mice) that exhibit a more severe C3G phenotype. SLN501 effectively prevented liver C3 synthesis, thus limiting AP dysregulation, glomerular C3d deposits and the development of ultrastructural alterations. These data provide firm evidence of the use of siRNA-mediated liver C3 gene silencing as a potential therapy for treating C3G patients with either partial or complete FH loss of function.


Subject(s)
Complement Factor H/deficiency , Glomerulonephritis, Membranoproliferative , Hereditary Complement Deficiency Diseases , Kidney Diseases , Humans , Animals , Mice , Complement C3/genetics , Complement C3/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Complement Factor H/genetics , Complement Factor H/therapeutic use , Glomerulonephritis, Membranoproliferative/genetics , Glomerulonephritis, Membranoproliferative/drug therapy , Glomerulonephritis, Membranoproliferative/metabolism , Complement Pathway, Alternative
2.
Mol Immunol ; 161: 25-32, 2023 09.
Article in English | MEDLINE | ID: mdl-37481826

ABSTRACT

Uncontrolled activation of the alternative pathway (AP) of complement, due to genetic and/or acquired defects, plays a primary pathogenetic role in C3 glomerulopathy (C3G), a rare and heterogeneous disease characterised by predominant C3 fragment deposition within the glomerulus, as well as glomerular damage. There are currently no approved disease-specific treatments for C3G, but new drugs that directly counteract AP dysregulation, targeting components of the pathway, have opened promising new perspectives for managing the disease. Complement factor B (FB), which is primarily synthesised by hepatocytes, is a key component of the AP, as it drives the central amplification loop of the complement system. In this study we used a GalNAc (N-Acetylgalactosamine)-conjugated siRNA to selectively target and suppress liver FB expression in two mouse models characterised by the complete (Cfh-/- mice) or partial (Cfh+/-) loss of function of complement factor H (FH). Homozygous deletion of FH induced a severe C3G phenotype, with strong dysregulation of the AP of complement, glomerular C3 deposition and almost complete C3 consumption. Mice with a heterozygous deletion of FH had intermediate C3 levels and exhibited slower disease progression, resembling human C3G more closely. Here we showed that FB siRNA treatment did not improve serum C3 levels, nor limit glomerular C3 deposition in Cfh-/- mice, while it did normalise circulating C3 levels, reduce glomerular C3 deposits, and limit mesangial electron-dense deposits in Cfh+/- mice. The present data provide important insights into the potential benefits and limitations of FB-targeted inhibition strategies and suggest RNA interference-mediated FB silencing in the liver as a possible therapeutic approach for treating C3G patients with FH haploinsufficiency.


Subject(s)
Glomerulonephritis, Membranoproliferative , Kidney Diseases , Humans , Animals , Mice , Complement Factor B/genetics , Complement Factor B/metabolism , Complement C3 , Homozygote , Sequence Deletion , Complement Factor H/genetics , Liver/metabolism , Complement Pathway, Alternative/genetics , Glomerulonephritis, Membranoproliferative/genetics , Glomerulonephritis, Membranoproliferative/therapy , Glomerulonephritis, Membranoproliferative/metabolism
3.
J Immunol ; 208(7): 1772-1781, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35277417

ABSTRACT

Alternative pathway complement dysregulation with abnormal glomerular C3 deposits and glomerular damage is a key mechanism of pathology in C3 glomerulopathy (C3G). No disease-specific treatments are currently available for C3G. Therapeutics inhibiting complement are emerging as a potential strategy for the treatment of C3G. In this study, we investigated the effects of N-acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) targeting the C3 component of complement that inhibits liver C3 expression in the C3G model of mice with heterozygous deficiency of factor H (Cfh +/- mice). We showed a duration of action for GalNAc-conjugated C3 siRNA in reducing the liver C3 gene expression in Cfh +/- mice that were dosed s.c. once a month for up to 7 mo. C3 siRNA limited fluid-phase alternative pathway activation, reducing circulating C3 fragmentation and activation of factor B. Treatment with GalNAc-conjugated C3 siRNA reduced glomerular C3d deposits in Cfh +/- mice to levels similar to those of wild-type mice. Ultrastructural analysis further revealed the efficacy of the C3 siRNA in slowing the formation of mesangial and subendothelial electron-dense deposits. The present data indicate that RNA interference-mediated C3 silencing in the liver may be a relevant therapeutic strategy for treating patients with C3G associated with the haploinsufficiency of complement factor H.


Subject(s)
Glomerulonephritis, Membranoproliferative , Kidney Diseases , Animals , Complement C3/genetics , Complement C3/metabolism , Complement Factor B/metabolism , Complement Factor H/genetics , Complement Pathway, Alternative/genetics , Glomerulonephritis, Membranoproliferative/pathology , Humans , Mice , RNA, Small Interfering/genetics
4.
J Pathol ; 256(4): 468-479, 2022 04.
Article in English | MEDLINE | ID: mdl-35000230

ABSTRACT

In addition to having blood glucose-lowering effects, inhibitors of sodium glucose cotransporter 2 (SGLT2) afford renoprotection in diabetes. We sought to investigate which components of the glomerular filtration barrier could be involved in the antiproteinuric and renoprotective effects of SGLT2 inhibition in diabetes. BTBR (black and tan, brachyuric) ob/ob mice that develop a type 2 diabetic nephropathy received a standard diet with or without empagliflozin for 10 weeks, starting at 8 weeks of age, when animals had developed albuminuria. Empagliflozin caused marked decreases in blood glucose levels and albuminuria but did not correct glomerular hyperfiltration. The protective effect of empagliflozin against albuminuria was not due to a reduction in podocyte damage as empagliflozin did not affect the larger podocyte filtration slit pore size nor the defective expression of nephrin and nestin. Empagliflozin did not reduce the thickening of the glomerular basement membrane. In BTBR ob/ob mice, the most profound abnormality seen using electron microscopy was in the endothelial aspect of the glomerular capillary, with significant loss of endothelial fenestrations. Remarkably, empagliflozin ameliorated the subverted microvascular endothelial ultrastructure. Caveolae and bridging diaphragms between adjacent endothelial fenestrae were seen in diabetic mice and associated with increased expression of caveolin-1 and the appearance of PV-1. These endothelial abnormalities were limited by the SGLT2 inhibitor. Although no expression of SGLT2 was found in glomerular endothelial cells, SGLT2 was expressed in the podocytes of diabetic mice. VEGF-A, which is a known stimulus for endothelial caveolin-1 and PV-1, was increased in podocytes of BTBR ob/ob mice and normalized by SGLT2 inhibitor treatment. Thus, empagliflozin's protective effect on the glomerular endothelium of diabetic mice could be due to a limitation of the paracrine signaling of podocyte-derived VEGF-A that resulted in a reduction of the abnormal endothelial caveolin-1 and PV-1, with the consequent preservation of glomerular endothelial function and permeability. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Albuminuria/drug therapy , Albuminuria/pathology , Albuminuria/prevention & control , Animals , Benzhydryl Compounds , Blood Glucose/metabolism , Caveolin 1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Endothelial Cells/metabolism , Female , Glomerular Basement Membrane/metabolism , Glucosides , Humans , Male , Mice , Signal Transduction , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Endothelial Growth Factor A/metabolism
5.
Sci Rep ; 11(1): 23580, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880332

ABSTRACT

Abnormal kidney development leads to lower nephron number, predisposing to renal diseases in adulthood. In embryonic kidneys, nephron endowment is dictated by the availability of nephron progenitors, whose self-renewal and differentiation require a relatively repressed chromatin state. More recently, NAD+-dependent deacetylase sirtuins (SIRTs) have emerged as possible regulators that link epigenetic processes to the metabolism. Here, we discovered a novel role for the NAD+-dependent deacylase SIRT3 in kidney development. In the embryonic kidney, SIRT3 was highly expressed only as a short isoform, with nuclear and extra-nuclear localisation. The nuclear SIRT3 did not act as deacetylase but exerted de-2-hydroxyisobutyrylase activity on lysine residues of histone proteins. Extra-nuclear SIRT3 regulated lysine 2-hydroxyisobutyrylation (Khib) levels of phosphofructokinase (PFK) and Sirt3 deficiency increased PFK Khib levels, inducing a glycolysis boost. This altered Khib landscape in Sirt3-/- metanephroi was associated with decreased nephron progenitors, impaired nephrogenesis and a reduced number of nephrons. These data describe an unprecedented role of SIRT3 in controlling early renal development through the regulation of epigenetics and metabolic processes.


Subject(s)
Glycolysis/genetics , Kidney Diseases/genetics , Organogenesis/genetics , Protein Processing, Post-Translational/genetics , Sirtuin 3/genetics , Animals , Cell Differentiation/genetics , Cell Nucleus/genetics , Chromatin/genetics , Epigenesis, Genetic/genetics , Kidney/physiology , Lysine/genetics , Mice , Mice, Inbred C57BL , NAD/genetics , Nephrons/physiology , Phosphofructokinases/genetics
6.
Metabolism ; 116: 154464, 2021 03.
Article in English | MEDLINE | ID: mdl-33309714

ABSTRACT

OBJECTIVE: CER-001 is an HDL mimetic that has been tested in different pathological conditions, but never with LCAT deficiency. This study was designed to investigate whether the absence of LCAT affects the catabolic fate of CER-001, and to evaluate the effects of CER-001 on kidney disease associated with LCAT deficiency. METHODS: Lcat-/- and wild-type mice received CER-001 (2.5, 5, 10 mg/kg) intravenously for 2 weeks. The plasma lipid/ lipoprotein profile and HDL subclasses were analyzed. In a second set of experiments, Lcat-/- mice were injected with LpX to induce renal disease and treated with CER-001 and then the plasma lipid profile, lipid accumulation in the kidney, albuminuria and glomerular podocyte markers were evaluated. RESULTS: In Lcat-/- mice a decrease in total cholesterol and triglycerides, and an increase in HDL-c was observed after CER-001 treatment. While in wild-type mice CER-001 entered the classical HDL remodeling pathway, in the absence of LCAT it disappeared from the plasma shortly after injection and ended up in the kidney. In a mouse model of renal disease in LCAT deficiency, treatment with CER-001 at 10 mg/kg for one month had beneficial effects not only on the lipid profile, but also on renal disease, by limiting albuminuria and podocyte dysfunction. CONCLUSIONS: Treatment with CER-001 ameliorates the dyslipidemia typically associated with LCAT deficiency and more importantly limits renal damage in a mouse model of renal disease in LCAT deficiency. The present results provide a rationale for using CER-001 in FLD patients.


Subject(s)
Apolipoprotein A-I/therapeutic use , Kidney Diseases/drug therapy , Lecithin Cholesterol Acyltransferase Deficiency/drug therapy , Lipid Metabolism/drug effects , Lipids/blood , Phospholipids/therapeutic use , Recombinant Proteins/therapeutic use , Animals , Apolipoprotein A-I/pharmacology , Cells, Cultured , Disease Models, Animal , Kidney Diseases/genetics , Kidney Diseases/pathology , Lecithin Cholesterol Acyltransferase Deficiency/genetics , Lecithin Cholesterol Acyltransferase Deficiency/metabolism , Lecithin Cholesterol Acyltransferase Deficiency/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Phospholipids/pharmacology , Podocytes/drug effects , Podocytes/pathology , Podocytes/physiology , Recombinant Proteins/pharmacology
7.
Sci Rep ; 10(1): 8418, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439965

ABSTRACT

More effective treatments for diabetic nephropathy remain a major unmet clinical need. Increased oxidative stress is one of the most important pathological mechanisms that lead to kidney damage and functional impairment induced by diabetes. Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase and critically regulates cellular reactive oxygen species (ROS) production and detoxification. Honokiol is a natural biphenolic compound that, by activating mitochondrial SIRT3, can carry out anti-oxidant, anti-inflammatory and anti-fibrotic activities. Here, we sought to investigate the renoprotective effects of honokiol in BTBR ob/ob mice with type 2 diabetes. Diabetic mice were treated with vehicle or honokiol between the ages of 8 and 14 weeks. Wild-type mice served as controls. Renal Sirt3 expression was significantly reduced in BTBR ob/ob mice, and this was associated with a reduction in its activity and increased ROS levels. Selective activation of SIRT3 through honokiol administration translated into the attenuation of albuminuria, amelioration of glomerular damage, and a reduction in podocyte injury. SIRT3 activation preserved mitochondrial wellness through the activation of SOD2 and the restoration of PGC-1α expression in glomerular cells. Additionally, the protective role of SIRT3 in glomerular changes was associated with enhanced tubular Sirt3 expression and upregulated renal Nampt levels, indicating a possible tubule-glomerulus retrograde interplay, which resulted in improved glomerular SIRT3 activity. Our results demonstrate the hitherto unknown renoprotective effect of SIRT3 against diabetic glomerular disease and suggest that the pharmacological modulation of SIRT3 activity is a possible novel approach to treating diabetic nephropathy.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Biphenyl Compounds/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/drug therapy , Kidney Glomerulus/pathology , Lignans/therapeutic use , Albuminuria/prevention & control , Animals , Cytokines/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Male , Mice , Mice, Obese , Mitochondria/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Podocytes/drug effects , Reactive Oxygen Species/metabolism , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism
8.
JCI Insight ; 3(15)2018 08 09.
Article in English | MEDLINE | ID: mdl-30089717

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have pleiotropic properties beyond blood glucose-lowering effects and modify important nonglycemic pathways, leading to end-organ protection. SGLT2 inhibitors display renoprotective effects in diabetic kidney disease, which creates a rationale for testing the therapeutic potential of this drug class in nondiabetic chronic kidney disease. Here, we have shown that dapagliflozin provided glomerular protection in mice with protein-overload proteinuria induced by bovine serum albumin (BSA), to a similar extent as an ACE inhibitor used as standard therapy for comparison. Dapagliflozin limited proteinuria, glomerular lesions, and podocyte dysfunction and loss. We provide the observation that SGLT2 was expressed in podocytes and upregulated after BSA injections. Through in vitro studies with cultured podocytes loaded with albumin we have identified what we believe to be a novel mechanism of action for SGLT2 inhibitor that directly targets podocytes and relies on the maintenance of actin cytoskeleton architecture. Whether SGLT2 inhibitors represent a possible future therapeutic option for some patients with proteinuric glomerular disease who do not have as yet an effective treatment will require ad hoc clinical studies.


Subject(s)
Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Podocytes/drug effects , Proteinuria/drug therapy , Renal Insufficiency, Chronic/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Benzhydryl Compounds/therapeutic use , Cell Line , Disease Models, Animal , Glucosides/therapeutic use , Humans , Injections, Intraperitoneal , Male , Mice , Podocytes/pathology , Proteinuria/etiology , Proteinuria/pathology , RNA, Small Interfering/metabolism , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/toxicity , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
9.
Diabetes ; 67(10): 2069-2083, 2018 10.
Article in English | MEDLINE | ID: mdl-29976618

ABSTRACT

In patients with diabetes, impaired activity of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13), the plasma metalloprotease that cleaves highly thrombogenic von Willebrand factor multimers, is a major risk factor of cardiovascular events. Here, using Adamts13-/- mice made diabetic by streptozotocin, we investigated the impact of the lack of ADAMTS13 on the development of diabetes-associated end-organ complications. Adamts13-/- mice experienced a shorter life span than their diabetic wild-type littermates. It was surprising that animal death was not related to the occurrence of detectable thrombotic events. The lack of ADAMTS13 drastically increased the propensity for ventricular arrhythmias during dobutamine-induced stress in diabetic mice. Cardiomyocytes of diabetic Adamts13-/- mice exhibited an aberrant distribution of the ventricular gap junction connexin 43 and increased phosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKII), and with the consequent CaMKII-induced disturbance in Ca2+ handling, which underlie propensity for arrhythmia. In vitro, thrombospondin 1 (TSP1) promoted, in a paracrine manner, CaMKII phosphorylation in murine HL-1 cardiomyocytes, and ADAMTS13 acted to inhibit TSP1-induced CaMKII activation. In conclusion, the deficiency of ADAMTS13 may underlie the onset of lethal arrhythmias in diabetes through increased CaMKII phosphorylation in cardiomyocytes. Our findings disclose a novel function for ADAMTS13 beyond its antithrombotic activity.


Subject(s)
ADAMTS13 Protein/metabolism , Diabetes Mellitus, Experimental/metabolism , ADAMTS13 Protein/deficiency , ADAMTS13 Protein/genetics , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Connexin 43/metabolism , Dobutamine/pharmacology , Immunohistochemistry , Male , Mice , Mice, Knockout , Phosphorylation/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Shear Strength , Thrombospondin 1/metabolism
10.
Diabetologia ; 60(6): 1114-1125, 2017 06.
Article in English | MEDLINE | ID: mdl-28364255

ABSTRACT

AIMS/HYPOTHESIS: Renal fibrosis is a common complication of diabetic nephropathy and is a major cause of end-stage renal disease. Despite the suggested link between renal fibrosis and microRNA (miRNA) dysregulation in diabetic nephropathy, the identification of the specific miRNAs involved is still incomplete. The aim of this study was to investigate miRNA profiles in the diabetic kidney and to identify potential downstream targets implicated in renal fibrosis. METHODS: miRNA expression profiling was investigated in the kidneys of 8-month-old Zucker diabetic fatty (ZDF) rats during overt nephropathy. Localisation of the most upregulated miRNA was established by in situ hybridisation. The candidate miRNA target was identified by in silico analysis and its expression documented in the diabetic kidney associated with fibrotic markers. Cultured tubule cells served to assess which of the profibrogenic stimuli acted as a trigger for the overexpressed miRNA, and to investigate underlying epigenetic mechanisms. RESULTS: In ZDF rats, miR-184 showed the strongest differential upregulation compared with lean rats (18-fold). Tubular localisation of miR-184 was associated with reduced expression of lipid phosphate phosphatase 3 (LPP3) and collagen accumulation. Transfection of NRK-52E cells with miR-184 mimic reduced LPP3, promoting a profibrotic phenotype. Albumin was a major trigger of miR-184 expression. Anti-miR-184 counteracted albumin-induced LPP3 downregulation and overexpression of plasminogen activator inhibitor-1. In ZDF rats, ACE-inhibitor treatment limited albuminuria and reduced miR-184, with tubular LPP3 preservation and tubulointerstitial fibrosis amelioration. Albumin-induced miR-184 expression in tubule cells was epigenetically regulated through DNA demethylation and histone lysine acetylation and was accompanied by binding of NF-κB p65 subunit to miR-184 promoter. CONCLUSIONS/INTERPRETATION: These results suggest that miR-184 may act as a downstream effector of albuminuria through LPP3 to promote tubulointerstitial fibrosis, and offer the rationale to investigate whether targeting miR-184 in association with albuminuria-lowering drugs may be a new strategy to achieve fully anti-fibrotic effects in diabetic nephropathy.


Subject(s)
Albuminuria/metabolism , Diabetic Nephropathies/metabolism , Fibrosis/metabolism , Kidney Diseases/metabolism , MicroRNAs/metabolism , Albuminuria/genetics , Animals , Chromatin Immunoprecipitation , Computational Biology , Diabetic Nephropathies/genetics , Fibrosis/genetics , Immunohistochemistry , In Situ Hybridization , Kidney Diseases/genetics , Male , MicroRNAs/genetics , NF-kappa B/metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Promoter Regions, Genetic/genetics , Rats , Rats, Zucker , Reverse Transcriptase Polymerase Chain Reaction
11.
Nephrol Dial Transplant ; 30 Suppl 4: iv54-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26209738

ABSTRACT

Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus and the leading cause of end-stage kidney disease. Both diabetes and chronic kidney disease are risk factors for cardiovascular disease, and diabetic patients with renal involvement are three times more likely to eventually die of cardiovascular disease than diabetic patients without signs of renal failure. In type 2 diabetes, microalbuminuria is a marker of renal dysfunction and a crucial predictor of cardiovascular disease. Inhibitors of angiotensin II synthesis/activity, while preventing micro- or macroalbuminuria, also reduced cardiovascular events in diabetic patients. However, the effectiveness of renin angiotensin system blocking agents depends on the time when treatment is started, and imperfect renoprotection may occur if therapy begins at an advanced disease phase. This raises the need to identify novel multidrug approaches that simultaneously inhibit additional pathways other than angiotensin II for those diabetic patients who remain at high risk of both poor renal and cardiovascular outcomes. Studies in animal models of diabetes have contributed to defining relevant cellular mechanisms underlying the pathogenesis of DN that could represent possible targets for therapies. The pathogenesis of DN is multifactorial, involving a complex series of molecular processes. In this review, we report evidence obtained in experimental models of DN on some specific processes and pathways implicated in DN that may be crucial for managing this disease.


Subject(s)
Diabetes Mellitus, Experimental/diagnosis , Kidney Diseases/diagnosis , Signal Transduction , Animals , Disease Progression
12.
Nephron ; 129(1): 52-61, 2015.
Article in English | MEDLINE | ID: mdl-25531096

ABSTRACT

BACKGROUND/AIMS: Experimental and clinical evidence suggested that monocyte chemoattractant protein-1 (MCP-1/CCL2) has a role in the development of interstitial inflammation and renal failure in polycystic kidney disease (PKD). We investigated whether bindarit, an inhibitor of MCP-1/CCL2 synthesis, could influence the evolution of PKD in PCK rats. METHODS: PCK rats were treated from 5 to 15 weeks of age with vehicle or bindarit. Sprague-Dawley rats served as control. For in vitro studies, murine podocytes were exposed to albumin with or without bindarit. RESULTS: MCP-1 mRNA was upregulated in the kidney of PCK rats and reduced by bindarit. Treatment limited overexpression of MCP-1 protein by epithelial cells of dilated tubules and cysts, and interstitial inflammatory cells. Excessive renal accumulation of monocytes/macrophages was lowered by bindarit by 41%. Serum creatinine slightly increased in PCK rats on vehicle and was similar to controls after bindarit. Kidney and liver cysts were not affected by treatment. Bindarit significantly reduced progressive proteinuria of PCK rats. The antiproteinuric effect was associated with the restoration of the defective nephrin expression in podocytes of PCK rats. Bindarit limited podocyte foot process effacement and ameliorated slit diaphragm frequency. In cultured podocytes, bindarit reduced MCP-1 production in response to albumin and inhibited albumin-induced cytoskeletal remodeling and cell migration. CONCLUSION: This study showed that although bindarit did not prevent renal cyst growth, it limited interstitial inflammation and renal dysfunction and reduced proteinuria in PKD. Thus, bindarit could be considered a therapeutic intervention complementary to therapies specifically acting to block renal cyst growth.


Subject(s)
Chemokine CCL2/antagonists & inhibitors , Indazoles/therapeutic use , Polycystic Kidney, Autosomal Dominant/drug therapy , Propionates/therapeutic use , Animals , Chemokine CCL2/biosynthesis , Chemokine CCL2/genetics , Disease Models, Animal , In Vitro Techniques , Macrophages/drug effects , Macrophages/pathology , Male , Monocytes/drug effects , Monocytes/pathology , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Proteinuria/drug therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Mutant Strains , Rats, Sprague-Dawley
13.
PLoS One ; 8(8): e70775, 2013.
Article in English | MEDLINE | ID: mdl-23967103

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone mainly produced by bone that acts in the kidney through FGF receptors and Klotho. Here we investigated whether the kidney was an additional source of FGF23 during renal disease using a model of type 2 diabetic nephropathy. Renal expression of FGF23 and Klotho was assessed in Zucker diabetic fatty (ZDF) and control lean rats at 2, 4, 6, 8 months of age. To evaluate whether the renoprotective effect of angiotensin converting enzyme (ACE) inhibitor in this model was associated with changes in FGF23 and Klotho, ZDF rats received ramipril from 4, when proteinuric, to 8 months of age. FGF23 mRNA was not detectable in the kidney of lean rats, nor of ZDF rats at 2 months of age. FGF23 became measurable in the kidney of diabetic rats at 4 months and significantly increased thereafter. FGF23 protein localized in proximal and distal tubules. Renal Klotho mRNA and protein decreased during time in ZDF rats. As renal disease progressed, serum phosphate levels increased in parallel with decline of fractional phosphorus excretion. Ramipril limited proteinuria and renal injury, attenuated renal FGF23 upregulation and ameliorated Klotho expression. Ramipril normalized serum phosphate levels and tended to increase fractional phosphorus excretion. These data indicate that during progressive renal disease the kidney is a site of FGF23 production which is limited by ACE inhibition. Interfering pharmacologically with the delicate balance of FGF23 and phosphorus in diabetes may have implications in clinics.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Diabetes Mellitus, Type 2/genetics , Disease Progression , Fibroblast Growth Factors/genetics , Gene Expression Regulation/drug effects , Kidney/drug effects , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Cytoprotection/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/metabolism , Glucuronidase/genetics , Kidney/metabolism , Klotho Proteins , Male , Phosphates/metabolism , Rats , Sodium-Phosphate Cotransporter Proteins/metabolism
14.
Am J Physiol Renal Physiol ; 303(9): F1370-81, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22952284

ABSTRACT

We previously reported that in a model of spontaneously progressive glomerular injury with early podocyte loss, abnormal migration, and proliferation of glomerular parietal epithelial progenitor cells contributed to the formation of synechiae and crescentic lesions. Here we first investigated whether a similar sequence of events could be extended to rats with adriamycin (ADR)-induced nephropathy. As a second aim, the regenerative potential of therapy with bone marrow-derived mesenchymal stem cells (MSCs) on glomerular resident cells was evaluated. In ADR-treated rats, decrease of WT1(+) podocyte number due to apoptosis was associated with reduced glomerular expression of nephrin and CD2AP. As a consequence of podocyte injury, glomerular adhesions of the capillary tuft to the Bowman's capsule were observed, followed by crescent-like lesions and glomerulosclerosis. Cellular components of synechiae were either NCAM(+) parietal progenitor cells or nestin(+) podocytes. In ADR rats, repeated injections of MSCs limited podocyte loss and apoptosis and partially preserved nephrin and CD2AP. MSCs attenuated the formation of glomerular podocyte-parietal epithelial cell bridges and normalized the distribution of NCAM(+) progenitor cells along the Bowman's capsule, thereby reducing glomerulosclerosis. Finding that MSCs increased glomerular VEGF expression and limited microvascular rarefaction may explain the prosurvival effect by stem cell therapy. MSCs also displayed anti-inflammatory activity. Coculture of MSCs with ADR-damaged podocytes showed a functional role of stem cell-derived VEGF on prosurvival pathways. These data suggest that MSCs by virtue of their tropism for damaged kidney and ability to provide a local prosurvival environment may represent a useful strategy to preserve podocyte viability and reduce glomerular inflammation and sclerosis.


Subject(s)
Kidney Diseases/pathology , Kidney Diseases/physiopathology , Kidney/physiology , Mesenchymal Stem Cell Transplantation , Podocytes/physiology , Regeneration/physiology , Stem Cells/physiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/physiology , Cell Count , Cell Movement/physiology , Coculture Techniques , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Doxorubicin/adverse effects , Kidney/pathology , Kidney Diseases/chemically induced , Male , Membrane Proteins/metabolism , Podocytes/pathology , Rats , Rats, Inbred Lew , Stem Cells/pathology , Treatment Outcome , Vascular Endothelial Growth Factor A/metabolism
15.
J Immunol ; 189(7): 3661-8, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22942429

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli is a primary cause of diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. The pathophysiology of renal microvascular thrombosis in Stx-HUS is still ill-defined. Based on evidence that abnormalities in thrombomodulin (TM), an anticoagulant endothelial glycoprotein that modulates complement and inflammation, predispose to atypical HUS, we assessed whether impaired TM function may adversely affect evolution of Stx-HUS. Disease was induced by coinjection of Stx2/LPS in wild-type mice (TM(wt/wt)) and mice that lack the lectin-like domain of TM (TM(LeD/LeD)), which is critical for its anti-inflammatory and cytoprotective properties. After Stx2/LPS, TM(LeD/LeD) mice exhibited more severe thrombocytopenia and renal dysfunction than TM(wt/wt) mice. Lack of lectin-like domain of TM resulted in a stronger inflammatory reaction after Stx2/LPS with more neutrophils and monocytes/macrophages infiltrating the kidney, associated with PECAM-1 and chemokine upregulation. After Stx2/LPS, intraglomerular fibrin(ogen) deposits were detected earlier in TM(LeD/LeD) than in TM(wt/wt) mice. More abundant fibrin(ogen) deposits were also found in brain and lungs. Under basal conditions, TM(LeD/LeD) mice exhibited excess glomerular C3 deposits, indicating impaired complement regulation in the kidney that could lead to local accumulation of proinflammatory products. TM(LeD/LeD) mice with HUS had a higher mortality rate than TM(wt/wt) mice. If applicable to humans, these findings raise the possibility that genetic or acquired TM defects might have an impact on the severity of microangiopathic lesions after exposure to Stx-producing E. coli infections and raise the potential for using soluble TM in the treatment of Stx-HUS.


Subject(s)
Hemolytic-Uremic Syndrome/genetics , Hemolytic-Uremic Syndrome/immunology , Lectins/deficiency , Shiga Toxin/administration & dosage , Thrombomodulin/deficiency , Thrombomodulin/genetics , Animals , Hemolytic-Uremic Syndrome/chemically induced , Male , Mice , Mice, 129 Strain , Mice, Transgenic , Protein Structure, Tertiary/genetics , Severity of Illness Index , Thrombomodulin/physiology
16.
Kidney Int ; 75(10): 1050-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19242507

ABSTRACT

Intrarenal complement activation plays an important role in the progression of chronic kidney disease. A key target of the activated complement cascade is the proximal tubule, a site where abnormally filtered plasma proteins and complement factors combine to promote injury. This study determined whether protein overloading of human proximal tubular cells (HK-2) in culture enhances complement activation by impairing complement regulation. Addition of albumin or transferrin to the cells incubated with diluted human serum as a source of complement caused increased apical C3 deposition. Soluble complement receptor-1 (an inhibitor of all 3 activation pathways) blocked complement deposition while the classical and lectin pathway inhibitor, magnesium chloride-EGTA, was, ineffective. Media containing albumin as well as complement had additive proinflammatory effects as shown by increased fractalkine and transforming growth factor-beta mRNA expression. This paralleled active C3 and C5b-9 generations, effects not shared by transferrin. Factor H, one of the main natural inhibitors of the alternative pathway, binds to heparan sulfate proteoglycans. Both the density of heparan sulfate and factor H binding were reduced with protein loading, thereby enhancing the albumin- and serum-dependent complement activation potential. Thus, protein overload reduces the ability of the tubule cell to bind factor H and counteract complement activation, effects instrumental to renal disease progression.


Subject(s)
Complement Factor H/metabolism , Complement System Proteins/metabolism , Kidney Tubules, Proximal/pathology , Proteins/pharmacology , Cell Line , Complement Activation , Disease Progression , Humans , Kidney Diseases/etiology , Kidney Diseases/pathology , Protein Binding , Serum Albumin/pharmacology , Transferrin/pharmacology
17.
J Immunol ; 181(2): 1460-9, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18606701

ABSTRACT

Shiga toxins (Stx) are the virulence factors of enterohemorrhagic Escherichia coli O157:H7, a worldwide emerging diarrheal pathogen, which precipitates postdiarrheal hemolytic uremic syndrome, the leading cause of acute renal failure in children. In this study, we show that Stx2 triggered expression of fractalkine (FKN), a CX3C transmembrane chemokine, acting as both adhesion counterreceptor on endothelial cells and soluble chemoattractant. Stx2 caused in HUVEC expression of FKN mRNA and protein, which promoted leukocyte capture, ablated by Abs to either endothelial FKN or leukocyte CX3CR1 receptor. Exposure of human glomerular endothelial cells to Stx2 recapitulated its FKN-inducing activity and FKN-mediated leukocyte adhesion. Both processes required phosphorylation of Src-family protein tyrosine kinase and p38 MAPK in endothelial cells. Furthermore, they depended on nuclear import of NF-kappaB and other stress-responsive transcription factors. Inhibition of their nuclear import with the cell-penetrating SN50 peptide reduced FKN mRNA levels and FKN-mediated leukocyte capture by endothelial cells. Adenoviral overexpression of IkappaBalpha inhibited FKN mRNA up-regulation. The FKN-mediated responses to Stx2 were also dependent on AP-1. In mice, both virulence factors of Stx-producing E. coli, Stx and LPS, are required to elicit hemolytic uremic syndrome. In this study, FKN was detected within glomeruli of C57BL/6 mice injected with Stx2, and further increased after Stx2 plus LPS coadministration. This was associated with recruitment of CX3CR1-positive cells. Thus, in response to Stx2, FKN is induced playing an essential role in the promotion of leukocyte-endothelial cell interaction thereby potentially contributing to the renal microvascular dysfunction and thrombotic microangiopathy that underlie hemolytic uremic syndrome due to enterohemorrhagic E. coli O157:H7 infection.


Subject(s)
Chemokine CX3CL1/metabolism , Endothelial Cells/immunology , Hemolytic-Uremic Syndrome/immunology , Kidney Glomerulus/immunology , Leukocytes/immunology , Receptors, Chemokine/metabolism , Shiga Toxin 2/immunology , Animals , CX3C Chemokine Receptor 1 , Cell Adhesion , Cells, Cultured , Chemokine CX3CL1/immunology , Disease Models, Animal , Endothelial Cells/metabolism , Escherichia coli O157/immunology , Hemolytic-Uremic Syndrome/metabolism , Hemolytic-Uremic Syndrome/microbiology , Humans , Kidney Glomerulus/blood supply , Kidney Glomerulus/cytology , Kidney Glomerulus/metabolism , Lipopolysaccharides/immunology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/immunology , NF-kappa B/metabolism , Receptors, Chemokine/immunology , Shiga Toxin 2/metabolism , Signal Transduction , Transcription Factor AP-1/immunology , Transcription Factor AP-1/metabolism , Up-Regulation , p38 Mitogen-Activated Protein Kinases/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
18.
J Am Soc Nephrol ; 19(6): 1158-67, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18354030

ABSTRACT

Intrarenal complement activation leads to chronic tubulointerstitial injury in animal models of proteinuric nephropathies, making this process a potential target for therapy. This study investigated whether a C3-mediated pathway promotes renal injury in the protein overload model and whether the abnormal exposure of proximal tubular cells to filtered complement could trigger the resulting inflammatory response. Mice with C3 deficiency were protected to a significant degree against the protein overload-induced interstitial inflammatory response and tissue damage, and they had less severe podocyte injury and less proteinuria. When the same injury was induced in wild-type (WT) mice, antiproteinuric treatment with the angiotensin-converting enzyme inhibitor lisinopril reduced the amount of plasma protein filtered, decreased the accumulation of C3 by proximal tubular cells, and protected against interstitial inflammation and damage. For determination of the injurious role of plasma-derived C3, as opposed to tubular cell-derived C3, C3-deficient kidneys were transplanted into WT mice. Protein overload led to the development of glomerular injury, accumulation of C3 in podocytes and proximal tubules, and tubulointerstitial changes. Conversely, when WT kidneys were transplanted into C3-deficient mice, protein overload led to a more mild disease and abnormal C3 deposition was not observed. These data suggest that the presence of C3 increases the glomerular filtration barrier's susceptibility to injury, ultrafiltered C3 contributes more to tubulointerstitial damage induced by protein overload than locally synthesized C3, and local C3 synthesis is irrelevant to the development of proteinuria. It is speculated that therapies targeting complement combined with interventions to minimize proteinuria would more effectively prevent the progression of renal disease.


Subject(s)
Complement C3/deficiency , Renal Insufficiency/etiology , Animals , Complement C3/physiology , Disease Progression , Glomerular Filtration Rate , Male , Mice
19.
Am J Pathol ; 169(6): 1965-75, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17148661

ABSTRACT

Shigatoxin (Stx) is the offending agent of post-diarrheal hemolytic uremic syndrome, characterized by glomerular ischemic changes preceding microvascular thrombosis. Because podocytes are highly sensitive to Stx cytotoxicity and represent a source of vasoactive molecules, we studied whether Stx-2 modulated the production of endothelin-1 (ET-1), taken as candidate mediator of podocyte dysfunction. Stx-2 enhanced ET-1 mRNA and protein expression via activation of nuclear factor kappaB (NF-kappaB) and activator protein-1 (Ap-1) to the extent that transfection with the dominant-negative mutant of IkappaB-kinase 2 or with Ap-1 decoy oligodeoxynucleotides reduced ET-1 mRNA levels. We propose a role for p38 and p42/44 mitogen-activated protein kinases (MAPKs) in mediating NF-kappaB-dependent gene transcription induced by Stx-2, based on data that Stx-2 phosphorylated p38 and p42/44 MAPKs and that MAPK inhibitors reduced transcription of NF-kappaB promoter/luciferase reporter gene construct induced by Stx-2. Stx-2 caused F-actin redistribution and intercellular gaps via production of ET-1 acting on ETA receptor, because cytoskeleton changes were prevented by ETA receptor blockade. Exogenous ET-1 induced cytoskeleton rearrangement and intercellular gaps via phosphatidylinositol-3 kinase and Rho-kinase pathway and increased protein permeability across the podocyte monolayer. These data suggest that the podocyte is a target of Stx, a novel stimulus for the synthesis of ET-1, which may control cytoskeleton remodeling and glomerular permeability in an autocrine fashion.


Subject(s)
Actins/metabolism , Endothelin-1/metabolism , Podocytes/drug effects , RNA, Messenger/metabolism , Shiga Toxin 2/pharmacology , Animals , Antigens, Tumor-Associated, Carbohydrate/metabolism , Cell Differentiation , Cell Membrane Permeability , Cells, Cultured , Cytoskeleton/metabolism , Endothelin-1/biosynthesis , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/physiology , Signal Transduction , Transcription Factor AP-1/physiology , Transcription, Genetic , Up-Regulation
20.
J Am Soc Nephrol ; 17(6): 1624-32, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16687628

ABSTRACT

The renoprotective potential of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist pioglitazone was explored in an immune model of progressive nephropathy, passive Heymann nephritis (PHN), compared with that of an angiotensin II receptor antagonist, taken as standard therapy for renoprotection. PHN rats received orally vehicle, pioglitazone (10 mg/kg twice daily), or candesartan (1 mg/kg twice daily) from months 2 to 8. Pioglitazone reduced proteinuria as effectively as candesartan and limited renal functional and structural changes. Kidneys from untreated PHN rats showed lower nephrin mRNA and protein than controls, both restored by pioglitazone. The effect was seen both early and late during the course of the disease. Whether the antiproteinuric effect of pioglitazone could be due to its effect on nephrin gene transcription also was investigated. HK-2 cells were transfected with plasmids that harbor the luciferase gene under portions (2-kb or 325-bp) of human nephrin gene promoter that contain putative peroxisome proliferator-responsive elements (PPRE) and incubated with pioglitazone (10 muM). Transcriptional activity of luciferase gene was highly increased by pioglitazone, with the strongest expression achieved with the 325-bp fragment. Increase in luciferase activity was prevented by bisphenol A diglycidyl ether, a PPAR-gamma synthetic antagonist. Electrophoretic mobility shift assay experiments showed a direct interaction of PPAR/retinoid X receptor heterodimers to PPRE present in the enhancer region of the nephrin promoter. In conclusion, pioglitazone exerts an antiproteinuric effect in immune-mediated glomerulonephritis as angiotensin II receptor antagonist does. Enhancement of nephrin gene transcription through specific PPRE in its promoter discloses a novel mechanism of renoprotection for PPAR-gamma agonists.


Subject(s)
Gene Expression Regulation , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , PPAR gamma/agonists , Proteinuria/drug therapy , Thiazolidinediones/pharmacology , Transcription, Genetic , Angiotensin Receptor Antagonists , Animals , Benzimidazoles/pharmacology , Biphenyl Compounds , Humans , Hypoglycemic Agents/pharmacology , Kidney Diseases/pathology , Male , Membrane Proteins/metabolism , Pioglitazone , Proteinuria/metabolism , Rats , Rats, Sprague-Dawley , Tetrazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...