Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Science ; 372(6542): 630-635, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33858991

ABSTRACT

Unconventional ferroelectricity exhibited by hafnia-based thin films-robust at nanoscale sizes-presents tremendous opportunities in nanoelectronics. However, the exact nature of polarization switching remains controversial. We investigated a La0.67Sr0.33MnO3/Hf0.5Zr0.5O2 capacitor interfaced with various top electrodes while performing in situ electrical biasing using atomic-resolution microscopy with direct oxygen imaging as well as with synchrotron nanobeam diffraction. When the top electrode is oxygen reactive, we observe reversible oxygen vacancy migration with electrodes as the source and sink of oxygen and the dielectric layer acting as a fast conduit at millisecond time scales. With nonreactive top electrodes and at longer time scales (seconds), the dielectric layer also acts as an oxygen source and sink. Our results show that ferroelectricity in hafnia-based thin films is unmistakably intertwined with oxygen voltammetry.

2.
Microsc Microanal ; 26(3): 439-446, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32501193

ABSTRACT

Atomic-resolution cryogenic scanning transmission electron microscopy (cryo-STEM) has provided a path to probing the microscopic nature of select low-temperature phases in quantum materials. Expanding cryo-STEM techniques to broadly tunable temperatures will give access to the rich temperature-dependent phase diagrams of these materials. With existing cryo-holders, however, variations in sample temperature significantly disrupt the thermal equilibrium of the system, resulting in large-scale sample drift. The ability to tune the temperature without negative impact on the overall instrument stability is crucial, particularly for high-resolution experiments. Here, we test a new side-entry continuously variable temperature dual-tilt cryo-holder which integrates liquid nitrogen cooling with a 6-pin micro-electromechanical system (MEMS) sample heater to overcome some of these experimental challenges. We measure consistently low drift rates of 0.3-0.4 Å/s and demonstrate atomic-resolution cryo-STEM imaging across a continuously variable temperature range from ~100 K to well above room temperature. We conduct additional drift stability measurements across several commercial sample stages and discuss implications for further developments of ultra-stable, flexible cryo-stages.

3.
Microsc Microanal ; 26(2): 211-219, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32051046

ABSTRACT

In microstructural corrosion studies, knowledge on the initiation of corrosion on an nm-scale is lacking. In situ transmission electron microscope (TEM) studies can elucidate where/how the corrosion starts, provided that the proper corrosive conditions are present during the investigation. In wet corrosion studies with liquid cell nanoreactors (NRs), the liquid along the electron beam direction leads to strong scattering and therefore image blurring. Thus, a quick liquid removal or thickness control of the liquid layer is preferred. This can be done by the use of a Peltier element embedded in an NR. As a prelude to such in situ work, we demonstrate the local wetting of a TEM sample, by creating a temperature decrease of 10 ± 2°C on the membrane of an NR with planar Sb/BiSb thermoelectric materials for the Peltier element. TEM samples were prepared and loaded in an NR using a dual-beam focused ion beam scanning electron microscope. A mixture of water vapor and carrier gas was passed through a chamber, which holds the micro-electromechanical system Peltier device and resulted in quick formation of a water layer/droplets on the sample. The TEM analysis after repeated corrosion of the same sample (ex situ studies) shows the onset and progression of O2 and H2S corrosion of the AA2024-T3 alloy and cold-rolled HCT980X steel lamellae.

4.
Nano Lett ; 19(6): 4091-4096, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31117760

ABSTRACT

We use off-axis electron holography to measure the electrostatic charge density distributions on graphene-based nanogap devices that have thicknesses of between 1 and 10 monolayers and separations of between 8 and 58 nm with a precision of better than a single unit charge. Our experimental measurements, which are compared with finite element simulations, show that wider graphene tips, which have thicknesses of a single monolayer at their ends, exhibit charge accumulation along their edges. The results are relevant for both fundamental research on graphene electrostatics and applications of graphene nanogaps to single nucleotide detection in DNA sequencing, single molecule electronics, plasmonic antennae, and cold field emission sources.

5.
Ultramicroscopy ; 188: 52-58, 2018 05.
Article in English | MEDLINE | ID: mdl-29554486

ABSTRACT

The key to understanding the performance of Li-O2 batteries is to study the chemical and structural properties of their discharge product(s) at the nanometer scale. Using TEM for this purpose poses challenges due to the sensitivity of samples to air and electron beams. This paper describes our use of in situ EELS to evaluate experimental procedures to reduce electron-beam degradation and presents methods to deal with air sensitivity. Our results show that Li2O2 decomposition is dependent on the total dose and is approximately 4-5 times more pronounced at 80 than at 200 kV. We also demonstrate the benefits of using low-dose-rate STEM. We show further that a "graphene cell", which encapsulates the sample within graphene sheets, can protect the sample against air and e-beam damage.

6.
ACS Nano ; 12(3): 2623-2633, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29474060

ABSTRACT

Many theoretical studies predict that DNA sequencing should be feasible by monitoring the transverse current through a graphene nanoribbon while a DNA molecule translocates through a nanopore in that ribbon. Such a readout would benefit from the special transport properties of graphene, provide ultimate spatial resolution because of the single-atom layer thickness of graphene, and facilitate high-bandwidth measurements. Previous experimental attempts to measure such transverse inplane signals were however dominated by a trivial capacitive response. Here, we explore the feasibility of the approach using a custom-made differential current amplifier that discriminates between the capacitive current signal and the resistive response in the graphene. We fabricate well-defined short and narrow (30 nm × 30 nm) nanoribbons with a 5 nm nanopore in graphene with a high-temperature scanning transmission electron microscope to retain the crystallinity and sensitivity of the graphene. We show that, indeed, resistive modulations can be observed in the graphene current due to DNA translocation through the nanopore, thus demonstrating that DNA sensing with inplane currents in graphene nanostructures is possible. The approach is however exceedingly challenging due to low yields in device fabrication connected to the complex multistep device layout.


Subject(s)
DNA/analysis , Graphite/chemistry , Nanopores , Nanostructures/chemistry , Sequence Analysis, DNA/instrumentation , Electric Conductivity , Electrochemical Techniques/instrumentation , Equipment Design , Motion , Nanopores/ultrastructure , Nanotechnology/instrumentation
7.
ACS Appl Mater Interfaces ; 10(7): 6073-6078, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29372638

ABSTRACT

Using the magnetocaloric effect in nanoparticles holds great potential for efficient refrigeration and energy conversion. The most promising candidate materials for tailoring the Curie temperature to room temperature are rare-earth-based magnetic nanoalloys. However, only few high-nuclearity lanthanide/transition-metal nanoalloys have been produced so far. Here we report, for the first time, the observation of magnetic response in spark-produced LaFeSi nanoalloys. The results suggest that these nanoalloys can be used to exploit the magnetocaloric effect near room temperature; such a finding can lead to the creation of unique multicomponent materials for energy conversion, thus helping toward the realization of a sustainable energy economy.

8.
Sci Rep ; 7(1): 2184, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28526840

ABSTRACT

Age-hardening in Al alloys has been used for over a century to improve its mechanical properties. However, the lack of direct observation limits our understanding of the dynamic nature of the evolution of nanoprecipitates during age-hardening. Using in-situ (scanning) transmission electron microscopy (S/TEM) while heating an Al-Cu alloy, we were able to follow the growth of individual nanoprecipitates at atomic scale. The heat treatments carried out at 140, 160, 180 and 200 °C reveal a temperature dependence on the kinetics of precipitation and three kinds of interactions of nano-precipitates. These are precipitate-matrix, precipitate-dislocation, and precipitate-precipitate interactions. The diffusion of Cu and Al during these interactions, results in diffusion-controlled individual precipitate growth, an accelerated growth when interactions with dislocations occur and a size dependent precipitate-precipitate interaction: growth and shrinkage. Precipitates can grow and shrink at opposite ends at the same time resulting in an effective displacement. Furthermore, the evolution of the crystal structure within an individual nanoprecipiate, specifically the mechanism of formation of the strengthening phase, θ', during heat-treatment is elucidated by following the same precipitate through its intermediate stages for the first time using in-situ S/TEM studies.

9.
Ultramicroscopy ; 158: 74-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26202895

ABSTRACT

We used a combination of in situ TEM, a MEMS-based heater as a substrate and a dedicated biasing sample holder to study the temperature dependence of electromigration in Pt nanobridges (500 nm wide, 15 nm high and 1000 nm long). We visualised changes in the nanobridges under both dynamic conditions, i.e. heating (substrate temperatures up to 660 K) and current passage. Our electromigration experiments at various substrate temperatures (100, 300, 420 and 660 K) show the same tendency: material transport occurs from the cathode to the anode side, which can be explained by the electron-wind force. In all cases the bridge breaks due to the formation of a neck closer to the cathode side. At 300, 420 and 660 K, voids and the neck form at the cathode contact pad simultaneously. The higher the temperature, the bigger the voids size. As expected, at higher temperatures a lower power is needed to break the nanobridge.

10.
ACS Nano ; 9(4): 3428-35, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25864552

ABSTRACT

Structural defects strongly impact the electrical transport properties of graphene nanostructures. In this Perspective, we give a brief overview of different types of defects in graphene and their effect on transport properties. We discuss recent experimental progress on graphene self-repair of defects, with a focus on in situ transmission electron microscopy studies. Finally, we present the outlook for graphene self-repair and in situ experiments.


Subject(s)
Graphite/chemistry , Nanotubes, Carbon/chemistry
11.
Nanotechnology ; 26(15): 155703, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25800081

ABSTRACT

The electrical properties of segments of tapered InAs nanowires (NWs) were investigated by in situ transmission electron microscopy with simultaneous I-V measurements using good ohmic contacts, thus excluding experimental artefacts as Joule heating caused by high-resistivity contacts. At low voltage the resistivity of InAs NWs with a diameter larger than 120 nm is constant (∼10(-2) Ω · cm). When the current is strongly increased a breakdown of the NW occurs close to the cathode side, whereby the main changes are an electromigration of In and a sublimation of As. The critical current density for breakdown was close to 10(6) A cm(-2) in most cases. A Joule heating and electromigration mechanism for the breakdown process is proposed.

12.
Adv Mater ; 27(7): 1288-93, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25556348

ABSTRACT

Two-dimensional assemblies of triazole-based spin-crossover nanoparticles (SCO NPs) presenting different morphologies are prepared and electrically characterized. The thermal hysteresis loop in the electrical conductance near room temperature correlates with the NP morphologies and their 2D organization. The unprecedentedly large difference - up to two orders of magnitude - in the electrical conductance of the two spin states is of interest for applications.

13.
Chem Commun (Camb) ; 51(16): 3320-3, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25431813

ABSTRACT

In this work, we investigate the thermal evolution of CdSe-CdS-ZnS core-multishell quantum dots (QDs) in situ using transmission electron microscopy (TEM). Starting at a temperature of approximately 250 °C, Zn diffusion into inner layers takes place together with simultaneous evaporation of particularly Cd and S. As a result of this transformation, CdxZn1-xSe-CdyZn1-yS core-shell QDs are obtained.


Subject(s)
Cadmium Compounds/chemistry , Hot Temperature , Quantum Dots/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Zinc/chemistry , Diffusion
14.
Nano Lett ; 15(1): 776-82, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25514824

ABSTRACT

Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (∼ 1-2 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification.


Subject(s)
Lab-On-A-Chip Devices , Membranes, Artificial , Nanopores , Surface Plasmon Resonance
15.
Nano Lett ; 14(10): 5891-8, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25233392

ABSTRACT

The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here we report the synthesis and characterization of metal-semiconductor core-shell nanowires. We demonstrate a solution-phase route to obtain stable core-shell metal-Cu2O nanowires with outstanding control over the resulting structure, in which the noble metal nanowire is used as the nucleation site for epitaxial growth of quasi-monocrystalline Cu2O shells at room temperature in aqueous solution. We use X-ray and electron diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, and absorption spectroscopy, as well as density functional theory calculations, to characterize the core-shell nanowires and verify their structure. Metal-semiconductor core-shell nanowires offer several potential advantages over thin film and traditional nanowire architectures as building blocks for photovoltaics, including efficient carrier collection in radial nanowire junctions and strong optical resonances that can be tuned to maximize absorption.

16.
Nano Lett ; 14(6): 3661-7, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24844280

ABSTRACT

Here, we show a novel solid-solid-vapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe nanocrystals grew epitaxially at the expense of CdSe nanodomains driven by evaporation of Cd. Analysis of atomic-resolution TEM observations and detailed atomistic simulations reveals that the growth process is mediated by vacancies.

17.
Nanotechnology ; 25(5): 055601, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24407270

ABSTRACT

A great variety of single- and multi-component nanocrystals (NCs) can now be synthesized and integrated into nanocrystal superlattices. However, the thermal and temporal stability of these superstructures and their components can be a limiting factor for their application as functional devices. On the other hand, temperature induced reconstructions can also reveal opportunities to manipulate properties and access new types of nanostructures. In situ atomically resolved monitoring of nanomaterials provides insight into the temperature induced evolution of the individual NC constituents within these superstructures at the atomic level. Here, we investigate the effect of temperature annealing on 2D square and hexagonal arrays of FexO/CoFe2O4 core/shell NCs by in situ heating in a transmission electron microscope (TEM). Both cubic and spherical NCs undergo a core-shell reconfiguration at a temperature of approximately 300 ° C, whereby the FexO core material segregates at the exterior of the CoFe2O4 shell, forming asymmetric dumbbells ('snowman-type' particles) with a small FexO domain attached to a larger CoFe2O4 domain. Upon continued annealing, the segregated FexO domains form bridges between the CoFe2O4 domains, followed by coalescence of all domains, resulting in loss of ordering in the 2D arrays.

18.
Nano Lett ; 14(1): 384-9, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24329182

ABSTRACT

We present a new approach to study the three-dimensional compositional and structural evolution of metal alloys during heat treatments such as commonly used for improving overall material properties. It relies on in situ heating in a high-resolution scanning transmission electron microscope (STEM). The approach is demonstrated using a commercial Al alloy AA2024 at 100-240 °C, showing in unparalleled detail where and how precipitates nucleate, grow, or dissolve. The observed size evolution of individual precipitates enables a separation between nucleation and growth phenomena, necessary for the development of refined growth models. We conclude that the in situ heating STEM approach opens a route to a much faster determination of the interplay between local compositions, heat treatments, microstructure, and mechanical properties of new alloys.

19.
J Chem Phys ; 141(24): 244503, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25554163

ABSTRACT

A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth," Nano Lett. 14, 3661-3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

20.
Nanotechnology ; 24(50): 505708, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24270041

ABSTRACT

We investigated the reversible electromigration in Pd-Pt nanobridges by means of in situ electron microscopy. Real-time nanometer-scale imaging with scanning transmission electron microscopy was used to determine the material transport. For high current densities (3-5 × 10(7) A cm(-2)), material transport occurs from the cathode towards the anode side, indicating a negative effective charge. The electromigration is dominated by atom diffusion at grain boundaries on the free surface. The reversal of material transport upon a change of the electric field direction could be the basis of a memristor.

SELECTION OF CITATIONS
SEARCH DETAIL
...