Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Antimicrob Chemother ; 78(7): 1701-1704, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37248737

ABSTRACT

BACKGROUND: As WGS comes of age, changes in EU legislation implemented in 2021 allow its usage for systematic monitoring of ESBL-producing Escherichia coli from livestock and meat, replacing phenotypic testing. Presently, phenotypic testing correlates well with antimicrobial resistance predicted from WGS data. WGS has added value in the wealth of additional information that is present in the data. OBJECTIVES: In this study we have detected the resistance phenotypes for a panel of antimicrobials while also analysing the molecular epidemiology of ESBL-producing E. coli. METHODS: Susceptibility testing was performed with broth microdilution of selectively isolated E. coli. Short-read WGS was performed in parallel and phenotypes predicted based on the sequence data, which was also used to determine the phylogeny of the isolates. RESULTS: The phenotypically determined resistance and the predicted resistance correlated 90%-100% for the different antimicrobial classes. Furthermore, clonal relationships were detected amongst ESBL-producing E. coli within livestock sectors and the meat produced by this sector. CONCLUSIONS: Further implementation of WGS analysis of ESBL/AmpC-producing E. coli within the AMR monitoring programme of EU member states and global surveillance programmes will contribute to determining the attribution of livestock in the prevalence of ESBL/AmpC-encoding E. coli in humans.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Humans , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Livestock , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Meat
SELECTION OF CITATIONS
SEARCH DETAIL
...