Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Radiol ; 95(1134): 20211028, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35451863

ABSTRACT

OBJECTIVE: The purpose was to evaluate reader variability between experienced and in-training radiologists of COVID-19 pneumonia severity on chest radiograph (CXR), and to create a multireader database suitable for AI development. METHODS: In this study, CXRs from polymerase chain reaction positive COVID-19 patients were reviewed. Six experienced cardiothoracic radiologists and two residents classified each CXR according to severity. One radiologist performed the classification twice to assess intraobserver variability. Severity classification was assessed using a 4-class system: normal (0), mild (1), moderate (2), and severe (3). A median severity score (Rad Med) for each CXR was determined for the six radiologists for development of a multireader database (XCOMS). Kendal Tau correlation and percentage of disagreement were calculated to assess variability. RESULTS: A total of 397 patients (1208 CXRs) were included (mean age, 60 years SD ± 1), 189 men). Interobserver variability between the radiologists ranges between 0.67 and 0.78. Compared to the Rad Med score, the radiologists show good correlation between 0.79-0.88. Residents show slightly lower interobserver agreement of 0.66 with each other and between 0.69 and 0.71 with experienced radiologists. Intraobserver agreement was high with a correlation coefficient of 0.77. In 220 (18%), 707 (59%), 259 (21%) and 22 (2%) CXRs there was a 0, 1, 2 or 3 class-difference. In 594 (50%) CXRs the median scores of the residents and the radiologists were similar, in 578 (48%) and 36 (3%) CXRs there was a 1 and 2 class-difference. CONCLUSION: Experienced and in-training radiologists demonstrate good inter- and intraobserver agreement in COVID-19 pneumonia severity classification. A higher percentage of disagreement was observed in moderate cases, which may affect training of AI algorithms. ADVANCES IN KNOWLEDGE: Most AI algorithms are trained on data labeled by a single expert. This study shows that for COVID-19 X-ray severity classification there is significant variability and disagreement between radiologist and between residents.


Subject(s)
COVID-19 , Algorithms , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Male , Middle Aged , Radiography, Thoracic , Radiologists , Retrospective Studies
2.
Opt Lett ; 46(11): 2634-2637, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34061075

ABSTRACT

In this Letter, we present a deep-learning-based method using neural networks (NNs) for inverse design of photonic nanostructures. We show that by using dimensionality reduction in both the design and the response spaces, the computational complexity of the inverse design algorithm is considerably reduced. As a proof of concept, we apply this method to design multi-layer thin-film structures composed of consecutive layers of two different dielectrics and compare the results using our techniques to those using conventional NNs.

3.
Sci Rep ; 11(1): 11112, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045510

ABSTRACT

We report a new approach using artificial intelligence (AI) to study and classify the severity of COVID-19 using 1208 chest X-rays (CXRs) of 396 COVID-19 patients obtained through the course of the disease at Emory Healthcare affiliated hospitals (Atlanta, GA, USA). Using a two-stage transfer learning technique to train a convolutional neural network (CNN), we show that the algorithm is able to classify four classes of disease severity (normal, mild, moderate, and severe) with the average Area Under the Curve (AUC) of 0.93. In addition, we show that the outputs of different layers of the CNN under dominant filters provide valuable insight about the subtle patterns in the CXRs, which can improve the accuracy in the reading of CXRs by a radiologist. Finally, we show that our approach can be used for studying the disease progression in a single patient and its influencing factors. The results suggest that our technique can form the foundation of a more concrete clinical model to predict the evolution of COVID-19 severity and the efficacy of different treatments for each patient through using CXRs and clinical data in the early stages of the disease. This use of AI to assess the severity and possibly predicting the future stages of the disease early on, will be essential in dealing with the upcoming waves of COVID-19 and optimizing resource allocation and treatment.


Subject(s)
COVID-19/diagnosis , Deep Learning , Image Processing, Computer-Assisted/methods , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Area Under Curve , Artificial Intelligence , COVID-19/diagnostic imaging , Computer Simulation , Disease Progression , Female , Humans , Male , Middle Aged , Neural Networks, Computer , Radiography , Severity of Illness Index
4.
Nano Lett ; 21(3): 1238-1245, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33481600

ABSTRACT

Efficient hybrid plasmonic-photonic metasurfaces that simultaneously take advantage of the potential of both pure metallic and all-dielectric nanoantennas are identified as an emerging technology in flat optics. Nevertheless, postfabrication tunable hybrid metasurfaces are still elusive. Here, we present a reconfigurable hybrid metasurface platform by incorporating the phase-change material Ge2Sb2Te5 (GST) into metal-dielectric meta-atoms for active and nonvolatile tuning of properties of light. We systematically design a reduced-dimension meta-atom, which selectively controls the hybrid plasmonic-photonic resonances of the metasurface via the dynamic change of optical constants of GST without compromising the scattering efficiency. As a proof-of-concept, we experimentally demonstrate two tunable metasurfaces that control the amplitude (with relative modulation depth as high as ≈80%) or phase (with tunability >230°) of incident light promising for high-contrast optical switching and efficient anomalous to specular beam deflection, respectively. Our findings further substantiate dynamic hybrid metasurfaces as compelling candidates for next-generation reprogrammable meta-optics.

5.
Nanoscale ; 11(44): 21266-21274, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31667481

ABSTRACT

In contrast to lossy plasmonic metasurfaces (MSs), wideband dielectric MSs comprising subwavelength nanostructures supporting Mie resonances are of great interest in the visible wavelength range. Here, for the first time to our knowledge, we experimentally demonstrate a reflective MS consisting of a square-lattice array of hafnia (HfO2) nanopillars to generate a wide color gamut. To design and optimize these MSs, we use a deep-learning algorithm based on a dimensionality reduction technique. Good agreement is observed between simulation and experimental results in yielding vivid and high-quality colors. We envision that these structures not only empower the high-resolution digital displays and sensitive colorimetric biosensors but also can be applied to on-demand applications of beaming in a wide wavelength range down to deep ultraviolet.

SELECTION OF CITATIONS
SEARCH DETAIL
...