Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932079

ABSTRACT

This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan-a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties-emerges as an excellent candidate for tissue regeneration. However, fabricating chitosan nanofibers via electrospinning often challenges the preservation of their structural integrity. This research innovatively develops a chitosan/polycaprolactone (CH/PCL) composite nanofibrous membrane by employing a layer-by-layer electrospinning technique, enhanced with silver nanoparticles (AgNPs) synthesized through a wet chemical process. The antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes were evaluated, while also analyzing their hydrophilicity and nanofibrous structure using SEM. The resulting CH/PCL-AgNPs composite membranes retain a porous framework, achieve balanced hydrophilicity, display commendable biocompatibility, and exert broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with their efficacy correlating to the AgNP concentration. Furthermore, our data suggest that the antimicrobial efficiency of these membranes is influenced by the timed release of silver ions during the incubation period. Membranes incorporated starting with AgNPs at a concentration of 50 µg/mL effectively suppressed the growth of both microorganisms during the early stages up to 8 h of incubation. These insights underscore the potential of the developed electrospun composite membranes, with their superior antibacterial qualities, to serve as innovative solutions in the field of tissue engineering.

2.
Article in English | MEDLINE | ID: mdl-34306164

ABSTRACT

OBJECTIVE: Polyherbal formulations Jathyadi Thailam and Jatyadi Ghritam (JT) are used in Indian traditional medicine for diabetic chronic wounds, fistula, fissure, eczema, and burn management. We aimed to investigate the antibacterial and anti-inflammatory properties of crude hexane and ethanol extracts of JT formulations. METHODS: Antibacterial activity of JT extracts was tested to estimate minimum inhibitory concentrations (MICs) against nine reference bacterial strains, including one methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Pseudomonas aeruginosa, and clinical strains of methicillin-susceptible S.aureus (MSSA), all involved in diabetic foot infection. The anti-inflammatory activity of plant extracts was evaluated in LPS-treated macrophage cells by measuring the mRNA levels and secretion of inflammatory mediators. RESULTS: The antibacterial activity of JT extracts was higher against Gram (+) bacteria, with the MICs varying from 1.95 to 62.5 mg/mL. Gram (-) bacteria were only susceptible to ethanol extracts of JT. Plant extracts were found to be the most active against the reference and clinical strains of MSSA, MRSA, and biofilm-forming S. epidermidis. JT extracts efficiently inhibited in a dose-dependent manner the mRNA expression and protein secretion of proinflammatory cytokines IL-6 and IL-1ß, and chemokines MCP-1 and CXCL10 in LPS-challenged macrophages. CONCLUSION: In the present study, we have shown that extracts of JT formulations possess potent antibacterial and anti-inflammatory properties that could be involved in chronic wound healing activity and has the potential to be used as external add-on therapy in the management of multidrug-resistant bacterial infections at the wound.

SELECTION OF CITATIONS
SEARCH DETAIL
...