Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 9047, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831089

ABSTRACT

The role of magmatic processes as a significant mechanism for the generation of voluminous silicic crust and the development of Cordilleran plateaus remains a lingering question in part because of the inherent difficulty in quantifying plutonic volumes. Despite this difficulty, a growing body of independently measured plutonic-to-volcanic ratios suggests the volume of plutonic material in the crust related to Cordilleran magmatic systems is much larger than is previously expected. To better examine the role of crustal magmatic processes and its relationship to erupted material in Cordilleran systems, we present a continuous high-resolution crustal seismic velocity model for an ~800 km section of the active South American Cordillera (Puna Plateau). Although the plutonic-to-volcanic ratios we estimate vary along the length of the Puna Plateau, all ratios are larger than those previously reported (~30:1 compared to 5:1) implying that a significant volume of intermediate to silicic plutonic material is generated in the crust of the central South American Cordillera. Furthermore, as Cordilleran-type margins have been common since the onset of modern plate tectonics, our findings suggest that similar processes may have played a significant role in generating and/or modifying large volumes of continental crust, as observed in the continents today.

2.
Nat Commun ; 7: 13185, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27779183

ABSTRACT

The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production.

3.
Nature ; 524(7564): 212-5, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26268192

ABSTRACT

Flat-slab subduction occurs when the descending plate becomes horizontal at some depth before resuming its descent into the mantle. It is often proposed as a mechanism for the uplifting of deep crustal rocks ('thick-skinned' deformation) far from plate boundaries, and for causing unusual patterns of volcanism, as far back as the Proterozoic eon. For example, the formation of the expansive Rocky Mountains and the subsequent voluminous volcanism across much of the western USA has been attributed to a broad region of flat-slab subduction beneath North America that occurred during the Laramide orogeny (80-55 million years ago). Here we study the largest modern flat slab, located in Peru, to better understand the processes controlling the formation and extent of flat slabs. We present new data that indicate that the subducting Nazca Ridge is necessary for the development and continued support of the horizontal plate at a depth of about 90 kilometres. By combining constraints from Rayleigh wave phase velocities with improved earthquake locations, we find that the flat slab is shallowest along the ridge, while to the northwest of the ridge, the slab is sagging, tearing, and re-initiating normal subduction. On the basis of our observations, we propose a conceptual model for the temporal evolution of the Peruvian flat slab in which the flat slab forms because of the combined effects of trench retreat along the Peruvian plate boundary, suction, and ridge subduction. We find that while the ridge is necessary but not sufficient for the formation of the flat slab, its removal is sufficient for the flat slab to fail. This provides new constraints on our understanding of the processes controlling the beginning and end of the Laramide orogeny and other putative episodes of flat-slab subduction.

4.
Nature ; 472(7344): 420-1, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21525917
5.
Nature ; 431(7004): 41-6, 2004 Sep 02.
Article in English | MEDLINE | ID: mdl-15343326

ABSTRACT

Seismic data provide images of crust-mantle interactions during ongoing removal of the dense batholithic root beneath the southern Sierra Nevada mountains in California. The removal appears to have initiated between 10 and 3 Myr ago with a Rayleigh-Taylor-type instability, but with a pronounced asymmetric flow into a mantle downwelling (drip) beneath the adjacent Great Valley. A nearly horizontal shear zone accommodated the detachment of the ultramafic root from its granitoid batholith. With continuing flow into the mantle drip, viscous drag at the base of the remaining approximately 35-km-thick crust has thickened the crust by approximately 7 km in a narrow welt beneath the western flank of the range. Adjacent to the welt and at the top of the drip, a V-shaped cone of crust is being dragged down tens of kilometres into the core of the mantle drip, causing the disappearance of the Moho in the seismic images. Viscous coupling between the crust and mantle is therefore apparently driving present-day surface subsidence.

6.
Nature ; 417(6888): 497-8, 2002 May 30.
Article in English | MEDLINE | ID: mdl-12037549
SELECTION OF CITATIONS
SEARCH DETAIL
...