Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 12(5): 1356-1377, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35191482

ABSTRACT

ABSTRACT: Locoregional failure (LRF) in patients with breast cancer post-surgery and post-irradiation is linked to a dismal prognosis. In a refined new model, we identified ectonucleotide pyrophosphatase/phosphodiesterase 1/CD203a (ENPP1) to be closely associated with LRF. ENPP1hi circulating tumor cells (CTC) contribute to relapse by a self-seeding mechanism. This process requires the infiltration of polymorphonuclear myeloid-derived suppressor cells and neutrophil extracellular trap (NET) formation. Genetic and pharmacologic ENPP1 inhibition or NET blockade extends relapse-free survival. Furthermore, in combination with fractionated irradiation, ENPP1 abrogation obliterates LRF. Mechanistically, ENPP1-generated adenosinergic metabolites enhance haptoglobin (HP) expression. This inflammatory mediator elicits myeloid invasiveness and promotes NET formation. Accordingly, a significant increase in ENPP1 and NET formation is detected in relapsed human breast cancer tumors. Moreover, high ENPP1 or HP levels are associated with poor prognosis. These findings unveil the ENPP1/HP axis as an unanticipated mechanism exploited by tumor cells linking inflammation to immune remodeling favoring local relapse. SIGNIFICANCE: CTC exploit the ENPP1/HP axis to promote local recurrence post-surgery and post-irradiation by subduing myeloid suppressor cells in breast tumors. Blocking this axis impairs tumor engraftment, impedes immunosuppression, and obliterates NET formation, unveiling new opportunities for therapeutic intervention to eradicate local relapse and ameliorate patient survival. This article is highlighted in the In This Issue feature, p. 1171.


Subject(s)
Breast Neoplasms , Myeloid-Derived Suppressor Cells , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/radiotherapy , Female , Haptoglobins , Humans , Myeloid-Derived Suppressor Cells/metabolism , Neoplasm Recurrence, Local/genetics , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
2.
Dis Model Mech ; 15(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34870316

ABSTRACT

There is a paucity of adequate mouse models and cell lines available to study lung squamous cell carcinoma (LUSC). We have generated and characterized two models of phenotypically different transplantable LUSC cell lines, i.e. UN-SCC679 and UN-SCC680, derived from A/J mice that had been chemically induced with N-nitroso-tris-chloroethylurea (NTCU). Furthermore, we genetically characterized and compared both LUSC cell lines by performing whole-exome and RNA sequencing. These experiments revealed similar genetic and transcriptomic patterns that may correspond to the classic LUSC human subtype. In addition, we compared the immune landscape generated by both tumor cells lines in vivo and assessed their response to immune checkpoint inhibition. The differences between the two cell lines are a good model for the remarkable heterogeneity of human squamous cell carcinoma. Study of the metastatic potential of these models revealed that both cell lines represent the organotropism of LUSC in humans, i.e. affinity to the brain, bones, liver and adrenal glands. In summary, we have generated valuable cell line tools for LUSC research, which recapitulates the complexity of the human disease.


Subject(s)
Carcinoma, Squamous Cell , Lung Neoplasms , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Immunotherapy , Lung/pathology , Lung Neoplasms/pathology , Mice
3.
Cancers (Basel) ; 12(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674353

ABSTRACT

Due to chemoresistance and a high propensity to form lung metastasis, survival rates in pediatric osteosarcoma (OS) are poor. With the aim to improve anticancer activity in pediatric OS, a multidrug nanomedicine was designed using the alkyl-lysophospholipid edelfosine (EF) co-assembled with squalenoyl-gemcitabine (SQ-Gem) to form nanoassemblies (NAs) of 50 nm. SQ-Gem/EF NAs modified the total Gem pool exposure in the blood stream in comparison with SQ-Gem NAs, which correlated with a better tolerability and a lower toxicity profile after multiple intravenous administrations in mice. For in vivo preclinical assessment in an orthotopic OS tumor model, P1.15 OS cells were intratibially injected in athymic nude mice. SQ-Gem/EF NAs considerably decreased the primary tumor growth kinetics and reduced the number of lung metastases. Our findings support the candidature of this anticancer nanomedicine as a potential pediatric OS therapy.

4.
Am J Respir Crit Care Med ; 197(9): 1164-1176, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29327939

ABSTRACT

RATIONALE: C5aR1 (CD88), a receptor for complement anaphylatoxin C5a, is a potent immune mediator. Its impact on malignant growth and dissemination of non-small cell lung cancer cells is poorly understood. OBJECTIVES: To investigate the contribution of the C5a/C5aR1 axis to the malignant phenotype of non-small cell lung cancer cells, particularly in skeletal colonization, a preferential lung metastasis site. METHODS: Association between C5aR1 expression and clinical outcome was assessed in silico and validated by immunohistochemistry. Functional significance was evaluated by lentiviral gene silencing and ligand l-aptamer inhibition in in vivo models of lung cancer bone metastasis. In vitro functional assays for signaling, migration, invasion, metalloprotease activity, and osteoclastogenesis were also performed. MEASUREMENTS AND MAIN RESULTS: High levels of C5aR1 in human lung tumors were significantly associated with shorter recurrence-free survival, overall survival, and bone metastasis. Silencing of C5aR1 in lung cancer cells led to a substantial reduction in skeletal metastatic burden and osteolysis in in vivo models. Furthermore, metalloproteolytic, migratory, and invasive tumor cell activities were modulated in vitro by C5aR1 stimulation or gene silencing. l-Aptamer blockade or C5aR1 silencing significantly reduced the osseous metastatic activity of lung cancer cells in vivo. This effect was associated with decreased osteoclastogenic activity in vitro and was rescued by the exogenous addition of the chemokine CXCL16. CONCLUSIONS: Disruption of C5aR1 signaling in lung cancer cells abrogates their tumor-associated osteoclastogenic activity, impairing osseous colonization. This study unveils the role played by the C5a/C5aR1 axis in lung cancer dissemination and supports its potential use as a novel therapeutic target.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Chemokine CXCL16/immunology , Lung Neoplasms/complications , Lung Neoplasms/immunology , Neoplasm Metastasis/immunology , Receptor, Anaphylatoxin C5a/immunology , Signal Transduction/immunology , Adult , Aged , Aged, 80 and over , Bone Neoplasms/immunology , Female , Humans , Male , Middle Aged
5.
Nat Commun ; 8: 14294, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220783

ABSTRACT

KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.


Subject(s)
Lung Neoplasms/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Mice, Inbred BALB C , Mice, Knockout , Mice, Nude , Mutation , Oncogenes/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins p21(ras)/genetics , RNA Interference , RNAi Therapeutics/methods , Xenograft Model Antitumor Assays/methods
6.
Transl Oncol ; 10(2): 255-261, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28214773

ABSTRACT

BACKGROUND: The skeleton is the most common site of colonization by metastatic cancers. Zoledronic acid (ZA) has been shown to be effective for the treatment of bone metastases regardless of whether the bone lesions are osteolytic or osteoblastic. Biochemical markers of bone turnover may be useful tools to quantify the degree of bone remodeling in the presence of bone metastases. The aim of this work was to establish the correlation between tumor dispersion (bioluminescence) and biochemical markers of bone turnover in two osteolytic and osteoblastic metastasis models in mice. METHODS: The A549M1 cell line that produces osteolytic metastases and the LADOB cell line extracted from a patient with a lung carcinoma and osteoblastic metastases cells were retrovirally transduced with a luciferase reporter gene for in vivo image analysis. Forty-four-week-old mice were inoculated in the left cardiac ventricle with A549M1 or LADOB cells. Twenty mouse of each group were treated with a single dose of ZA (70 µg/kg) 5 days after i.c. Ten animals of each group were sacrificed at 21 and 28 days postinoculation in A549M1 and 60 and 75 days in the LADOB assay. Bioluminescence analysis was quantified 7, 14, 21 ,and 28 days postinoculation in A549M1 mice and 33, 45, 60, and 75 days after inoculation in LADOB mice. Osteocalcin (BGP), aminoterminal propeptide of procollagen I (PINP), carboxiterminal telopeptide of type I collagen (CTX), and 5b isoenzyme of tartrate-resistant acid phosphatase were measured by ELISA (IDS, UK). RESULTS: Bioluminescence imaging revealed a significant increase of tumor burden on time in both osteolytic and osteoblastic mice models. ZA administration resulted in a significant decrease in tumor burden at 21 and 28 days in the A549M1 animals and 60 and 70 days postinoculation in the LADOB line. Biomarkers levels were significantly increased in the untreated group at every point in the osteolytic model. In the osteoblastic model, 2 months after inoculation, all biomarkers were significantly increased. However, 2.5 months postinoculation, only PINP and CTX were significantly increased. Serum bone remodeling markers decreased in ZA-treated mice as compared with tumor groups in both models. With respect to the correlation between bone turnover markers and tumor burden, in the osteolytic model, PINP and BGP demonstrate a strong correlation with bioluminescence in both tumoral and ZA animals, and only CTX was significantly associated with bioluminescence in the group of animals that were not treated with ZA. CONCLUSIONS: We found that the best biomarkers for the diagnosis of both osteolytic and osteoblastic metastasis are formation markers, especially BGP. Moreover, these markers can be useful in the follow-up of the treatment with ZA in both types of metastasis.

7.
J Hematol Oncol ; 10(1): 23, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28103946

ABSTRACT

BACKGROUND: Activated protein C/endothelial protein C receptor (APC/EPCR) axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. METHODS: Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1) silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. RESULTS: Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR through SPOCK1 confers a cell growth advantage in 3D promoting breast tumorigenesis and metastasis. CONCLUSIONS: EPCR represents a clinically relevant factor associated with poor outcome and a novel vulnerability to develop combination therapies for breast cancer patients.


Subject(s)
Breast Neoplasms/pathology , Carcinoma/secondary , Endothelial Protein C Receptor/physiology , Neoplasm Proteins/physiology , Proteoglycans/physiology , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Breast Neoplasms/metabolism , Carcinoma/metabolism , Cell Culture Techniques , Cell Cycle , Cell Division , Cell Line, Tumor , Coculture Techniques , Disease Progression , Endothelial Protein C Receptor/antagonists & inhibitors , Endothelial Protein C Receptor/genetics , Female , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Nude , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Transplantation , Specific Pathogen-Free Organisms , Transcriptome , Tumor Microenvironment
8.
J Pathol ; 239(4): 438-49, 2016 08.
Article in English | MEDLINE | ID: mdl-27172275

ABSTRACT

Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFß-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: http://bioinfow.dep.usal.es/osteosarcoma/ Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Bone Neoplasms/pathology , Calcium-Binding Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Lung Neoplasms/secondary , Osteosarcoma/secondary , Animals , Bone Neoplasms/metabolism , Cell Movement/physiology , Humans , Lung Neoplasms/metabolism , Matrix Metalloproteinases/metabolism , Mice , Mice, Nude , Osteosarcoma/metabolism , Phosphorylation , Prognosis , Smad Proteins/metabolism , Matrix Gla Protein
9.
Oncotarget ; 6(29): 27288-303, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26318423

ABSTRACT

The spread of lung cancer cells to distant sites represents a common event associated with poor prognosis. A fraction of tumor cells named cancer stem cells (CSCs) have the ability to overcome therapeutic stress and remain quiescent. However, whether these CSCs have also the capacity to initiate and sustain metastasis remains unclear. Here, we used tumor sphere cultures (TSC) isolated from mouse and human lung cancer models to enrich for CSCs, and assessed their metastatic potential as compared to non-CSCs. As expected, TSC overexpressed a variety of stem cell markers and displayed chemoresistance. The CSC phenotype of TSC was confirmed by their higher growth ability in soft agar and tumorigenic potential in vivo, despite their reduced in vitro cell growth kinetics. Surprisingly, the appearance of spontaneous lung metastases was strongly delayed in mice injected with TSC as compared to non-TSC cells. Similarly, this finding was confirmed in several other models of metastasis, an effect associated with a retarded colonization activity. Interestingly, such delay correlated with a quiescent phenotype whose underlined mechanisms included an increase in p27 protein and lower phospho-ERK1/2 levels. Thus, these data suggest that cells enriched for CSC properties display an impaired metastatic activity, a finding with potential clinical implications.


Subject(s)
Neoplasm Metastasis , Neoplastic Stem Cells/cytology , Spheroids, Cellular/cytology , Agar/chemistry , Animals , Antineoplastic Agents/therapeutic use , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Mice, Transgenic , Osteolysis , Phenotype , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , p38 Mitogen-Activated Protein Kinases/metabolism
10.
J Bone Miner Res ; 29(10): 2287-96, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24737304

ABSTRACT

Osteosarcoma is the most common malignant bone tumor in children and adolescents. The presence of metastases and the lack of response to conventional treatment are the major adverse prognostic factors. Therefore, there is an urgent need for new treatment strategies that overcome both of these problems. Our purpose was to elucidate whether the use of the oncolytic adenovirus Δ24-RGD alone or in combination with standard chemotherapy would be effective, in vitro and in vivo, against osteosarcoma. Our results showed that Δ24-RGD exerted a potent antitumor effect against osteosarcoma cell lines that was increased by the addition of cisplatin. Δ24-RGD osteosarcoma treatment resulted in autophagy in vitro that was further enhanced when combined with cisplatin. Of importance, administration of Δ24-RGD and/or cisplatin, in novel orthotopic and two lung metastatic models in vivo resulted in a significant reduction of tumor burden meanwhile maintaining a safe toxicity profile. Together, our data underscore the potential of Δ24-RGD to become a realistic therapeutic option for primary and metastatic pediatric osteosarcoma. Moreover, this study warrants a future clinical trial to evaluate the safety and efficacy of Δ24-RGD for this devastating disease.


Subject(s)
Adenoviridae/physiology , Cisplatin/therapeutic use , Oligopeptides/therapeutic use , Oncolytic Viruses/physiology , Osteosarcoma/therapy , Adolescent , Animals , Autophagy/drug effects , Cell Death/drug effects , Cell Line, Tumor , Child , Cisplatin/pharmacology , Combined Modality Therapy , Humans , Inhibitory Concentration 50 , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice, Nude , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/ultrastructure , Xenograft Model Antitumor Assays
11.
Mol Oncol ; 8(3): 689-703, 2014 May.
Article in English | MEDLINE | ID: mdl-24593875

ABSTRACT

Bone metastasis represents one of the most deleterious clinical consequences arising in the context of many solid tumors. Severe osteolysis results from tumor cell colonization of the bone compartment, a process which entails reciprocal exchange of soluble signals between tumor cells and their osseous microenvironment. Recent evidence indicates that tumor-intrinsic miRNAs are pleiotropic regulators of gene expression. But they are also frequently released in exosome-like vesicles (ELV). Yet the functional relevance of the transference of tumor-derived ELV and their miRNA cargo to the extracellular milieu during osseous colonization is unknown. Comparative transcriptomic profiling using an in vivo murine model of bone metastasis identified a repressed miRNA signature associated with high prometastatic activity. Forced expression of single miRNAs identified miR-192 that markedly appeased osseous metastasis in vivo, as shown by X-ray, bioluminescence imaging and microCT scans. Histological examination of metastatic lesions revealed impaired tumor-induced angiogenesis in vivo, an effect that was associated in vitro with decreased hallmarks of angiogenesis. Isolation and characterization of ELV by flow cytometry, Western blot analysis, transmission electron microscopy and nanoparticle tracking analysis revealed the ELV cargo enrichment in miR-192. Consistent with these findings, fluorescent labeled miR-192-enriched-ELV showed the in vitro transfer and release of miR-192 in target endothelial cells and abrogation of the angiogenic program by repression of proangiogenic IL-8, ICAM and CXCL1. Moreover, in vivo infusion of fluorescent labeled ELV efficiently targeted cells of the osseous compartment. Furthermore, treatment with miR-192 enriched ELV in a model of in vivo bone metastasis pre-conditioned osseous milieu and impaired tumor-induced angiogenesis, thereby reducing the metastatic burden and tumor colonization. Changes in the miRNA-cargo content within ELV represent a novel mechanism heavily influencing bone metastatic colonization, which is most likely relevant in other target organs. Mechanistic mimicry of this phenomenon by synthetic nanoparticles could eventually emerge as a novel therapeutic approach.


Subject(s)
Adenocarcinoma/pathology , Bone Neoplasms/secondary , Bone and Bones/pathology , Exosomes/pathology , Lung Neoplasms/pathology , MicroRNAs/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma of Lung , Animals , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone and Bones/metabolism , Cell Line, Tumor , Exosomes/genetics , Exosomes/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , MicroRNAs/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology
12.
Mol Oncol ; 8(2): 196-206, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24321314

ABSTRACT

Lung adenocarcinoma (ADC) is the most common lung cancer subtype and presents a high mortality rate. Clinical recurrence is often associated with the emergence of metastasis and treatment resistance. The purpose of this study was to identify genes with high prometastatic activity which could potentially account for treatment resistance. Global transcriptomic profiling was performed by robust microarray analysis in highly metastatic subpopulations. Extensive in vitro and in vivo functional studies were achieved by overexpression and by silencing gene expression. We identified the small GTPase RHOB as a gene that promotes early and late stages of metastasis in ADC. Gene silencing of RHOB prevented metastatic activity in a systemic murine model of bone metastasis. These effects were highly dependent on tumor-host interactions. Clinical analysis revealed a marked association between high RHOB levels and poor survival. Consistently, high RHOB levels promote metastasis progression, taxane-chemoresistance, and contribute to the survival advantage to γ-irradiation. We postulate that RHOB belongs to a novel class of "genes of recurrence" that have a dual role in metastasis and treatment resistance.


Subject(s)
Adenocarcinoma/enzymology , Bone Neoplasms/enzymology , Drug Resistance, Neoplasm , Lung Neoplasms/enzymology , Neoplasm Proteins/metabolism , rhoB GTP-Binding Protein/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Bridged-Ring Compounds/pharmacology , Cell Line, Tumor , Heterografts , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Neoplasm Proteins/genetics , Neoplasm Transplantation , Taxoids/pharmacology , rhoB GTP-Binding Protein/genetics
13.
Bone ; 52(1): 532-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23142363

ABSTRACT

Recent evidence suggests that miRNAs could be used as serum markers in a variety of normal and pathological conditions. In this study, we aimed to identify novel miRNAs associated with skeletal metastatic disease in a preclinical model of lung cancer bone metastasis. We assessed the validity of these miRNAs as reliable serum biochemical markers to monitor the extent of disease and response to treatment in comparison to imaging techniques and standard biochemical markers of bone turnover. Using a murine model of human lung cancer bone metastasis after zoledronic acid (ZA) treatment, PINP (procollagen I amino-terminal propeptide) was the only marker that exhibited a strong correlation with osteolytic lesions and tumor burden at early and late stages of bone colonization. In contrast, BGP (osteocalcin) and CTX (carboxyterminal telopeptide) demonstrated a strong correlation only at late stages. We performed qPCR based screening of a panel of 380 human miRNAs and quantified bone metastatic burden using micro-CT scans, X-rays and bioluminescence imaging. Interestingly, levels of miR-326 strongly associated with tumor burden and PINP in vehicle-treated animals, whereas no association was found in ZA-treated animals. Only miR-193 was associated with biochemical markers PINP, BGP and CTX in ZA-treated animals. Consistently, miR-326 and PINP demonstrated a strong correlation with tumor burden. Our findings, taken together, indicate that miR-326 could potentially serve as a novel biochemical marker for monitoring bone metastatic progression.


Subject(s)
Bone Neoplasms/secondary , Bone Remodeling , Lung Neoplasms/pathology , Biomarkers , Cell Line, Tumor , Humans , Models, Molecular , X-Ray Microtomography
14.
Am J Respir Crit Care Med ; 186(1): 96-105, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22461368

ABSTRACT

RATIONALE: Efficient metastasis requires survival and adaptation of tumor cells to stringent conditions imposed by the extracellular milieu. Identification of critical survival signaling pathways in tumor cells might unveil novel targets relevant in disease progression. OBJECTIVES: To investigate the contribution of activated protein C (APC) and its receptor (endothelial protein C receptor [EPCR]) in animal models of lung cancer metastasis and in patients with lung adenocarcinoma. METHODS: Signaling pathway triggered by APC/EPCR and its relevance in apoptosis was studied in vitro. Functional significance was assessed by silencing and blocking antibodies in several in vivo models of lung cancer metastasis in athymic nude Foxn1(nu) mice. We examined EPCR levels using a microarray dataset of 107 patients. Immunohistochemical analysis was performed in an independent cohort of 295 patients with lung adenocarcinoma. MEASUREMENTS AND MAIN RESULTS: The effects of APC binding to EPCR rapidly triggered Akt and extracellular signal-regulated kinase signaling pathways, leading to attenuated in vitro apoptosis. In vivo, silencing of EPCR expression or blocking APC/EPCR interaction reduced infiltration in the target organ, resulting in impaired prometastatic activity. Moreover, overexpression of EPCR induced an increased metastatic activity to target organs. Analysis of clinical samples showed a robust association between high EPCR levels and poor prognosis, particularly in stage I patients. CONCLUSIONS: EPCR and its ligand APC promote cell survival that contributes to tumor cell endurance to stress favoring prometastatic activity of lung adenocarcinoma. EPCR/APC is a novel target of relevance in the clinical outcome of early-stage lung cancer.


Subject(s)
Adenocarcinoma/secondary , Blood Coagulation Factors/physiology , Lung Neoplasms/pathology , Protein C/physiology , Receptors, Cell Surface/physiology , Animals , Apoptosis/physiology , Cell Survival , Cellular Microenvironment/physiology , Disease Models, Animal , Female , Immunohistochemistry , Mice , Prognosis , Protein Array Analysis , Signal Transduction/physiology
15.
Clin Cancer Res ; 18(4): 969-80, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22223527

ABSTRACT

PURPOSE: We investigated the role of the collagen-binding receptor discoidin domain receptor-1 (DDR1) in the initiation and development of bone metastasis. EXPERIMENTAL DESIGN: We conducted immunohistochemical analyses in a cohort of 83 lung cancer specimens and examined phosphorylation status in a panel of human lung cancer cell lines. Adhesion, chemotaxis, invasiveness, metalloproteolytic, osteoclastogenic, and apoptotic assays were conducted in DDR1-silenced cells. In vivo, metastatic osseous homing and colonization were assessed in a murine model of metastasis. RESULTS: DDR1 was expressed in a panel of human lung cancer cell lines, and high DDR1 levels in human lung tumors were associated with poor survival. Knockdown (shDDR1) cells displayed unaltered growth kinetics in vitro and in vivo. In contrast, shDDR1 cells showed reduced invasiveness in collagen matrices and increased apoptosis in basal conditions and induced apoptosis in vitro. More importantly, conditioned media of DDR1-knockdown cells decreased osteoclastogenic activity in vitro. Consequently, in a model of tumor metastasis to bone, lack of DDR1 showed decreased metastatic activity associated with reduced tumor burden and osteolytic lesions. These effects were consistent with a substantial reduction in the number of cells reaching the bone compartment. Moreover, intratibial injection of shDDR1 cells significantly decreased bone tumor burden, suggesting impaired colonization ability that was highly dependent on the bone microenvironment. CONCLUSIONS: Disruption of DDR1 hampers tumor cell survival, leading to impaired early tumor-bone engagement during skeletal homing. Furthermore, inhibition of DDR1 crucially alters bone colonization. We suggest that DDR1 represents a novel therapeutic target involved in bone metastasis.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Receptor Protein-Tyrosine Kinases/genetics , Animals , Apoptosis/genetics , Bone Neoplasms/mortality , Bone Resorption/genetics , Cell Adhesion/genetics , Cell Movement/genetics , Cell Proliferation , Cell Survival , Discoidin Domain Receptor 1 , Female , Gene Expression , Gene Silencing , Humans , Mice , Mice, Nude , Neoplasm Invasiveness/genetics , Osteoclasts/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
16.
Clin Exp Metastasis ; 28(8): 779-91, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21796372

ABSTRACT

Lung cancer comprises a large variety of histological subtypes with a frequent proclivity to form bone metastasis; a condition associated with dismal prognosis. To identify common mechanisms in the development of osteolytic metastasis, we systematically screened a battery of lung cancer cell lines and developed three models of non-small cell lung cancer (NSCLC) with a common proclivity to form osseous lesions, which represented different histological subtypes. Comparative analysis revealed different incidences and latency times. These differences were correlated with cell-type-specific secretion of osteoclastogenic factors, including macrophage inflammatory protein-1α, interleukin-8 and parathyroid hormone-related protein, some of which were exacerbated in conditions that mimicked tumor-stroma interactions. In addition, a distinct signature of matrix metalloproteinase (MMP) activity derived from reciprocal tumor-stroma interactions was detected for each tumor cell line. Thus, these results suggest subtle differences in the mechanisms of bone colonization for each lung cancer subtype, but share, although each to a different degree, dual MMP and osteoclastogenic activities that are differentially enhanced upon tumor-stromal interactions.


Subject(s)
Bone Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/secondary , Lung Neoplasms/pathology , Small Cell Lung Carcinoma/secondary , Stromal Cells/pathology , Tumor Microenvironment , Animals , Blotting, Western , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Matrix Metalloproteinases/metabolism , Mice , Mice, Nude , Neoplasm Invasiveness , Osteoclasts/metabolism , Osteoclasts/pathology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Stromal Cells/metabolism , Survival Rate , Tumor Cells, Cultured
17.
Cancer Biomark ; 10(1): 35-41, 2011.
Article in English | MEDLINE | ID: mdl-22297550

ABSTRACT

BACKGROUND: The cortactin (CTTN) gene has been found, by transcriptomic profiling, to be overexpressed in pediatric osteosarcoma. The location of CTTN at 11q13 and the role of cortactin in cytoskeleton restructuring make CTTN of interest as a potential biomarker for osteosarcoma. MATERIALS AND METHODS: Osteoblasts were isolated from 20 high-grade osteosarcomas before chemotherapy, and paired with cell samples from normal tissue, prior to RNA expression analysis on HG-U133A chips (Affymetrix). Semiquantitative CTTN mRNA expression was analyzed by real-time PCR. An osteosarcoma tissue microarray (TMA) containing 233 tissue spots from 48 patients was used for an immunohistochemical (IHC) study of cortactin. RESULTS: Transcriptomic profiling and real-time PCR analysis indicated increased CTTN expression in osteosarcomas (p = 0.001, Student's T test). TMA IHC showed cortactin to be present more frequently and in greater abundance in osteosarcomas than non-tumoral osteoblastic samples (p< 0.006, Mann-Withney test). Analysis of clinical outcomes indicated that overall survival for patients with primary tumors positive for cortactin was significantly lower than that for patients with cortactin negative (or only weakly staining) tumors (p = 0.0278, Log-rank test). CONCLUSIONS: Our preliminary data support the hypothesis that over-expression of cortactin, contained in the 11q13 amplicon, is involved in osteosarcoma carcinogenesis. The potential of cortactin overexpression as a biomarker for osteosarcoma is consolidated.


Subject(s)
Bone Neoplasms/genetics , Cortactin/genetics , Gene Expression , Osteosarcoma/genetics , Up-Regulation , Adolescent , Adult , Bone Neoplasms/mortality , Bone Neoplasms/pathology , Child , Cortactin/metabolism , Female , Gene Expression Profiling , Humans , Male , Neoplasm Staging , Osteosarcoma/mortality , Osteosarcoma/pathology , Prognosis , Tissue Array Analysis , Tumor Cells, Cultured , Young Adult
18.
Cancer Res ; 71(1): 164-74, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21097719

ABSTRACT

Bone microenvironment and cell-cell interactions are crucial for the initiation and development of metastasis. By means of a pharmacologic approach, using the multitargeted tyrosine kinase inhibitor sunitinib, we tested the relevance of the platelet-derived growth factor receptor (PDGFR) axis in the bone marrow (BM) stromal compartment for the initiation and development of lung cancer metastasis to bone. PDGFRß was found to be the main tyrosine kinase target of sunitinib expressed in BM stromal ST-2 and MC3T3-E1 preosteoblastic cells. In contrast, no expression of sunitinib-targeted receptors was found in A549M1 and low levels in H460M5 lung cancer metastatic cells. Incubation of ST-2 and human BM endothelial cells with sunitinib led to potent cell growth inhibition and induction of apoptosis in a dose-dependent manner. Similarly, sunitinib induced a robust proapoptotic effect in vivo on BM stromal PDGFRß(+) cells and produced extensive disruption of tissue architecture and vessel leakage in the BM cavity. Pretreatment of ST-2 cells with sunitinib also hindered heterotypic adhesion to lung cancer cell lines. These effects were correlated with changes in cell-cell and cell-matrix molecules in both stromal and tumor cells. Pretreatment of mice with sunitinib before intracardiac inoculation of A549M1 or H460M5 cells caused marked inhibition of tumor cells homing to bone, whereas no effect was found when tumor cells were pretreated before inoculation. Treatment with sunitinib dramatically increased overall survival and prevented tumor colonization but not bone lesions, whereas combination with zoledronic acid resulted in marked reduction of osteolytic lesions and osseous tumor burden. Thus, disruption of the PDGFR axis in the BM stroma alters heterotypic tumor-stromal and tumor-matrix interactions, thereby preventing efficient engagement required for bone homing and osseous colonization. These results support the notion that concomitant targeting of the tumor and stromal compartment is a more effective approach for blocking bone metastasis.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Bone Marrow Cells/drug effects , Bone Neoplasms/prevention & control , Indoles/pharmacology , Lung Neoplasms/pathology , Pyrroles/pharmacology , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Signal Transduction , Stromal Cells/drug effects , Animals , Apoptosis/drug effects , Bone Marrow Cells/metabolism , Bone Neoplasms/secondary , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Gene Expression Profiling , Humans , Mice , Neoplasm Invasiveness , Receptors, Platelet-Derived Growth Factor/metabolism , Stromal Cells/metabolism , Sunitinib
19.
Clin Cancer Res ; 15(16): 5082-91, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19671856

ABSTRACT

PURPOSE: Osteosarcoma is the most prevalent bone tumor in children and adolescents. At present, the mechanisms of initiation, maintenance, and metastasis are poorly understood. The purpose of this study was to identify relevant molecular targets in the pathogenesis of osteosarcoma. EXPERIMENTAL DESIGN: Tumor chemonaive osteoblastic populations and paired control normal osteoblasts were isolated and characterized phenotypically from seven osteosarcoma patients. Global transcriptomic profiling was analyzed by robust microarray analysis. Candidate genes were confirmed by real-time PCR and organized in molecular pathways. EBF2 and osteoprotegerin (OPG) levels were determined by real-time PCR and OPG protein levels were assessed by ELISA. Immunohistochemical analysis was done in a panel of 46 osteosarcoma samples. Silencing of EBF2 was achieved by lentiviral transduction of short hairpin RNA. Apoptosis was determined by caspase-3/7 activity. RESULTS: A robust clustered transcriptomic signature was obtained in osteosarcoma. Transcription factor EBF2, a known functional bone regulator, was among the most significantly overexpressed genes. Immunohistochemical analysis showed that osteosarcoma is expressed in approximately 70% of tumors analyzed. Because EBF2 was shown previously to act as a transcriptional activator of OPG, elevated levels of EBF2 were associated with high OPG protein levels in osteosarcoma samples compared with normal osteoblastic cells. Knockdown of EBF2 led to stunted abrogation of OPG levels and increased sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. CONCLUSIONS: These findings suggest that EBF2 represents a novel marker of osteosarcoma. EBF2 up-regulation may be one of the mechanisms involved in the high levels of OPG in osteosarcoma, contributing to decrease TRAIL-induced apoptosis and leading to TRAIL resistance.


Subject(s)
Apoptosis/drug effects , Basic Helix-Loop-Helix Transcription Factors/physiology , Bone Neoplasms/genetics , Osteoprotegerin/physiology , Osteosarcoma/genetics , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Adolescent , Adult , Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Bone Neoplasms/mortality , Bone Neoplasms/pathology , Cells, Cultured , Child , Down-Regulation , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Matched-Pair Analysis , Osteosarcoma/mortality , Osteosarcoma/pathology , Survival Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...