Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters










Publication year range
2.
J Phys Chem C Nanomater Interfaces ; 127(34): 17171-17178, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37670793

ABSTRACT

Two-dimensional transition metal dichalcogenide (TMDC) materials have shown great potential for usage in opto-electronic devices, especially down to the regime of a few layers to a single layer. However, at these limits, the material properties can be strongly influenced by the interfaces. By using photoconductive atomic force microscopy, we show a local enhancement of photoconductivity at the nanoscale in bilayer molybdenum disulfide on mica, where water is confined between the TMDC and the substrate. We have found that the structural phase of the water influences the doping level and thus the tunneling barrier at the nanojunction. This leads to an increase in photocurrent and enhanced photopower generation.

3.
Phys Rev Lett ; 131(10): 106201, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37739350

ABSTRACT

Evidence of presolidification, the counterpart to premelting, is reported. Near the eutectic temperature, T_{C}, the propagation direction of thermal gradient driven motion of eutectic Ge-Pt droplets on Ge(110) is determined by presolidification. Well above T_{C}, the micron-sized droplets move towards the hottest location at the substrate, irrespective of crystalline direction. At 90 K above T_{C}, a strong, unanticipated preference for propagation along the substrate [001] azimuth suddenly emerges, which is attributed to presolidification at the liquid-solid interface. The propagation along [001] is accompanied by a distinct change in shape from compact to elongated along [001].

4.
Phys Rev Lett ; 130(19): 196401, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37243643

ABSTRACT

We present the first experimental evidence of a topological phase transition in a monoelemental quantum spin Hall insulator. Particularly, we show that low-buckled epitaxial germanene is a quantum spin Hall insulator with a large bulk gap and robust metallic edges. Applying a critical perpendicular electric field closes the topological gap and makes germanene a Dirac semimetal. Increasing the electric field further results in the opening of a trivial gap and disappearance of the metallic edge states. This electric field-induced switching of the topological state and the sizable gap make germanene suitable for room-temperature topological field-effect transistors, which could revolutionize low-energy electronics.

5.
J Phys Chem C Nanomater Interfaces ; 127(1): 599-605, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36660094

ABSTRACT

The Ge(110) surface reconstructs into ordered and disordered phases, in which the basic unit is a five-membered ring of Ge atoms (pentagon). The variety of surface reconstructions leads to a rich electronic density of states with several surface states. Using scanning tunneling microscopy and spectroscopy, we have identified the exact origins of these surface states and linked them to either the Ge pentagons or the underlying Ge-Ge bonds. We show that even moderate fluctuations in the positions of the Ge pentagonal units induce large variations in the local density of states. The local density of states modulates in a precise manner, following the geometrical constraints on tiling Ge pentagons. These geometry-correlated electronic states offer a vast configurational landscape that could provide new opportunities in data storage and computing applications.

6.
Langmuir ; 38(33): 10202-10215, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35951972

ABSTRACT

We have studied decanethiolate self-assembled monolayers on the Au(001) surface. Planar and striped phases, as well as disordered regions, have formed after exposing the Au surface to a decanethiol solution. The planar phases that we observe have a hexagonal symmetry and have not been previously reported for thiols on the Au(001) surface and have lower coverage compared to that of the other known thiol planar phases such as the square α phase. The striped phases that we observe are similar to the previously reported ß phase but still feature unit cells that cannot be modeled as the archetype, and the coverage is also somewhat lower. The disordered decanethiolate regions are more dynamic compared to the ordered phases, confirmed with I(t) spectroscopy. This suggests that in these regions the coverage is too low in order to form ordered decanethiolate phases. Our findings contribute to the growing family of possible decanethiol formations on the Au(001) surface, for which still less is known compared to the extensive overview present for the Au(111) surface.

7.
J Phys Chem C Nanomater Interfaces ; 126(27): 11400-11406, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35865793

ABSTRACT

Germanium sulfide (GeS) is a layered monochalcogenide semiconductor with a band gap of about 1.6 eV. To verify the suitability of GeS for field-effect-based device applications, a detailed understanding of the electronic transport mechanisms of GeS-metal junctions is required. In this work, we have used conductive atomic force microscopy (c-AFM) to study charge carrier injection in metal-GeS nanocontacts. Using contact current-voltage spectroscopy, we identified three dominant charge carrier injection mechanisms: thermionic emission, direct tunneling, and Fowler-Nordheim tunneling. In the forward-bias regime, thermionic emission is the dominating current injection mechanism, whereas in the reverse-bias regime, the current injection mechanism is quantum mechanical tunneling. Using tips of different materials (platinum, n-type-doped silicon, and highly doped p-type diamond), we found that the Schottky barrier is almost independent of the work function of the metallic tip, which is indicative of a strong Fermi-level pinning. This strong Fermi-level pinning is caused by charged defects and impurities.

8.
J Phys Chem C Nanomater Interfaces ; 126(27): 11285-11297, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35865794

ABSTRACT

We embarked on an in situ low-energy electron microscopy, photo-electron emission microscopy, and selected area low-energy electron diffraction study during the cooling of huge eutectic droplets through the critical stages of the eutectic transition. On this journey through uncharted waters, we revealed an expected initial shrinking of the exposed area of the droplet, followed by an unanticipated expansion. We attribute this behavior to an initial fast amorphization of the interface between the droplet and surface, followed by the recrystallization of Ge expelled from the droplet at the interface. As a major surprise, we discovered the emergence of extensive "spaghetti"-like patterns, which are rationalized in terms of parallel Ge ripples oriented along, mainly, [-554] and [-55-4] directions. They emerge during spinodal decomposition when passing the eutectic temperature of the system. Their sides are defined by Ge{111} and Ge{11-1} vicinals covered with Pt-modified (√3 × âˆš3) superstructures. The distance between adjacent ripples is about 18 nm.

9.
Soft Matter ; 18(21): 4136-4145, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35583141

ABSTRACT

Multi-component fluids with phase transitions show a plethora of fascinating phenomena with rich physics. Here we report on a transition in the growth mode of plasmonic bubbles in binary liquids. By employing high-speed imaging we reveal that the transition is from slow evaporative to fast convective growth and accompanied by a sudden increase in radius. The transition occurs as the three-phase contact line reaches the spinodal temperature of the more volatile component leading to massive, selective evaporation. This creates a strong solutal Marangoni flow along the bubble which marks the beginning of convective growth. We support this interpretation by simulations. After the transition the bubble starts to oscillate in position and in shape. Though different in magnitude the frequencies of both oscillations follow the same power law , which is characteristic of bubble shape oscillations, with the surface tension σ as the restoring force and the bubble's added mass as inertia. The transitions and the oscillations both induce a strong motion in the surrounding liquid, opening doors for various applications where local mixing is beneficial.

10.
ACS Appl Electron Mater ; 4(12): 6020-6028, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36588623

ABSTRACT

Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.

11.
Phys Rev E ; 104(2-2): 025101, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34525659

ABSTRACT

Plasmonic bubbles are of great relevance in numerous applications, including catalytic reactions, micro/nanomanipulation of molecules or particles dispersed in liquids, and cancer therapeutics. So far, studies have been focused on bubble nucleation in pure liquids. Here we investigate plasmonic bubble nucleation in ternary liquids consisting of ethanol, water, and trans-anethole oil, which can show the so-called ouzo effect. We find that oil (trans-anethole) droplet plumes are produced around the growing plasmonic bubbles. The nucleation of the microdroplets and their organization in droplet plumes is due to the symmetry breaking of the ethanol concentration field during the selective evaporation of ethanol from the surrounding ternary liquids into the growing plasmonic bubbles. Numerical simulations show the existence of a critical Marangoni number Ma (the ratio between solutal advection rate and the diffusion rate), above which the symmetry breaking of the ethanol concentration field occurs, leading to the emission of the droplet plumes. The numerical results agree with the experimental observation that more plumes are emitted with increasing ethanol-water relative weight ratios and hence Ma. Our findings on the droplet plume formation reveal the rich phenomena of plasmonic bubble nucleation in multicomponent liquids and help to pave the way to achieve enhanced mixing in multicomponent liquids in chemical, pharmaceutical, and cosmetic industries.

12.
Proc Natl Acad Sci U S A ; 118(23)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34088844

ABSTRACT

The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, display surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and early evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kilohertz. We identify the competition between solutal and thermal Marangoni forces as the origin of the periodic bouncing. The former arises due to the selective vaporization of ethanol at the substrate's side of the bubble, leading to a solutal Marangoni flow toward the hot substrate, which pushes the bubble away. The latter arises due to the temperature gradient across the bubble, leading to a thermal Marangoni flow away from the substrate, which sucks the bubble toward it. We study the dependence of the frequency of the bouncing phenomenon from the control parameters of the system, namely the ethanol fraction and the laser power for the plasmonic heating. Our findings can be generalized to boiling and electrolytically or catalytically generated bubbles in multicomponent liquids.

13.
Langmuir ; 36(42): 12745-12754, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33074008

ABSTRACT

In this paper, we obtain maps of the spatial tunnel barrier variations in self-assembled monolayers of organosulfurs on Au(111). Maps down to the sub-nanometer scale are obtained by combining topographic scanning tunneling microscopy images with dI/dz spectroscopy. The square root of the tunnel barrier height is directly proportional to the local work function and the dI/dz signal. We use ratios of the tunnel barriers to study the work function contrast in various decanethiol phases: the lying-down striped ß phase, the dense standing-up φ phase, and the oxidized decanesulfonate λ phase. We compare the induced work function variations too: the work function contrast induced by a lying-down striped phase in comparison to the modulation induced by the standing-up φ phase, as well as the oxidized λ phase. By performing these comparisons, we can account for the similarities and differences in the effects of the mechanisms acting on the surface and extract valuable insights into molecular binding to the substrate. The pillow effect, governing the lowering of the work function due to lying-down molecular tails in the striped low density phases, seems to have quite a similar contribution as the surface dipole effect emerging in the dense standing-up decanethiol phases. The dI/dz spectroscopy map of the nonoxidized ß phase compared to the map of the oxidized λ phase indicates that the strong binding of molecules to the substrate is no longer present in the latter.

14.
Phys Rev E ; 102(3-1): 032138, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33076009

ABSTRACT

We have derived exact expressions for the domain wall free energy along the three high-symmetry directions of a triangular lattice with anisotropic nearest-neighbor interactions. The triangular lattice undergoes an order-disorder phase transition at a temperature T_{c} given by e^{-(ε_{1}+ε_{2})/2kT_{c}}+e^{-(ε_{2}+ε_{3})/2kT_{c}}+e^{-(ε_{3}+ε_{1})/2kT_{c}}=1, where ε_{1}, Îµ_{2}, Îµ_{3} are the nearest-neighbor interaction energies, and ε_{1}+ε_{2}>0, Îµ_{2}+ε_{3}>0, Îµ_{3}+ε_{1}>0. Finally, we have derived expressions for the thermally induced meandering of the domain walls at temperatures below the phase transition temperature. We show how these expressions can be used to extract the interaction energies of two-dimensional systems with a triangular lattice.

15.
J Phys Chem Lett ; 11(20): 8631-8637, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32960058

ABSTRACT

The growth of surface plasmonic microbubbles in binary water/ethanol solutions is experimentally studied. The microbubbles are generated by illuminating a gold nanoparticle array with a continuous wave laser. Plasmonic bubbles exhibit ethanol concentration-dependent behaviors. For low ethanol concentrations (fe) of ≲67.5%, bubbles do not exist at the solid-liquid interface. For high fe values of ≳80%, the bubbles behave as in pure ethanol. Only in an intermediate window of 67.5% ≲ fe ≲ 80% do we find sessile plasmonic bubbles with a highly nontrivial temporal evolution, in which as a function of time three phases can be discerned. (1) In the first phase, the microbubbles grow, while wiggling. (2) As soon as the wiggling stops, the microbubbles enter the second phase in which they suddenly shrink, followed by (3) a steady reentrant growth phase. Our experiments reveal that the sudden shrinkage of the microbubbles in the second regime is caused by a depinning event of the three-phase contact line. We systematically vary the ethanol concentration, laser power, and laser spot size to unravel water recondensation as the underlying mechanism of the sudden bubble shrinkage in phase 2.

16.
J Colloid Interface Sci ; 575: 326-336, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32387741

ABSTRACT

HYPOTHESIS: The Hansen Solubility Parameters (HSP) derived from Molecular Dynamics (MD) simulations can be used as a fast approach to predict surfactants adsorption on a solid surface. Experiments and simulations: We focused on the specific case of siloxane-based surfactants adsorption on silicon oxide surface (SiO2), encountered in inkjet printing processes. A simplified atomistic model of the SiO2 surface was designed to enable the computation of its solubility parameter using MD, and to subsequently determine the interactions of the SiO2 surface with the siloxane-based surfactant and the various solvents employed. Surfactant adsorption was characterized experimentally using contact angle goniometry, ellipsometry, XPS and AFM. FINDINGS: Comparison of the numerical results with experiments showed that the HSP theory allows to identify the range of solvents that are likely to prevent surfactant adsorption on the SiO2 surface. The proposed approach indicates that polar solvents, such as acetone and triacetin, which are strongly attracted to the silicon oxide surface might form a shield that prevents siloxane-based surfactants adsorption. This simple approach, can guide the selection of adequate solvents for surfaces and surfactants with specific chemical structures, providing opportunities for controlling interfacial adsorption.

17.
Angew Chem Int Ed Engl ; 59(32): 13657-13662, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32315109

ABSTRACT

The thermal decomposition of graphene oxide (GO) is a complex process at the atomic level and not fully understood. Here, a subclass of GO, oxo-functionalized graphene (oxo-G), was used to study its thermal disproportionation. We present the impact of annealing on the electronic properties of a monolayer oxo-G flake and correlated the chemical composition and topography corrugation by two-probe transport measurements, XPS, TEM, FTIR and STM. Surprisingly, we found that oxo-G, processed at 300 °C, displays C-C sp3 -patches and possibly C-O-C bonds, next to graphene domains and holes. It is striking that those C-O-C/C-C sp3 -separated sp2 -patches a few nanometers in diameter possess semiconducting properties with a band gap of about 0.4 eV. We propose that sp3 -patches confine conjugated sp2 -C atoms, which leads to the local semiconductor properties. Accordingly, graphene with sp3 -C in double layer areas is a potential class of semiconductors and a potential target for future chemical modifications.

18.
J Phys Chem C Nanomater Interfaces ; 124(4): 2591-2597, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32030112

ABSTRACT

Metal nanoparticles under laser irradiation can produce enormous heat due to surface plasmon resonance. When submerged in a liquid, this can lead to the nucleation of plasmonic bubbles. In the very early stage, the nucleation of a giant vapor bubble was observed with an ultrahigh-speed camera. In this study, the formation of this giant bubble on gold nanoparticles in six binary liquid combinations has been investigated. We find that the time delay between the beginning of the laser heating and the bubble nucleation is determined by the absolute amount of dissolved gas in the liquid. Moreover, the bubble volume mainly depends on the vaporization energy of the liquid, consisting of the latent heat of vaporization and the energy needed to reach the boiling temperature. Our results contribute to controlling the initial giant bubble nucleation and have strong bearings on applications of such bubbles.

19.
Phys Rev E ; 102(6-1): 063109, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33466073

ABSTRACT

Water-immersed gold nanoparticles irradiated by a laser can trigger the nucleation of plasmonic bubbles after a delay time of a few microseconds [Wang et al., Proc. Natl. Acad. Sci. USA 122, 9253 (2018)]. Here we systematically investigated the light-vapor conversion efficiency, η, of these plasmonic bubbles as a function of the ambient pressure. The efficiency of the formation of these initial-phase and mainly water-vapor containing bubbles, which is defined as the ratio of the energy that is required to form the vapor bubbles and the total energy dumped in the gold nanoparticles before nucleation of the bubble by the laser, can be as high as 25%. The amount of vaporized water first scales linearly with the total laser energy dumped in the gold nanoparticles before nucleation, but for larger energies the amount of vaporized water levels off. The efficiency η decreases with increasing ambient pressure. The experimental observations can be quantitatively understood within a theoretical framework based on the thermal diffusion equation and the thermal dynamics of the phase transition.

20.
J Phys Chem C Nanomater Interfaces ; 123(38): 23586-23593, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31583035

ABSTRACT

Under continuous laser irradiation, noble metal nanoparticles immersed in water can quickly heat up, leading to the nucleation of so-called plasmonic bubbles. In this work, we want to further understand the bubble nucleation and growth mechanism. In particular, we quantitatively study the effect of the amount of dissolved air on the bubble nucleation and growth dynamics, both for the initial giant bubble, which forms shortly after switching on the laser and is mainly composed of vapor, and for the final life phase of the bubble, during which it mainly contains air expelled from water. We found that the bubble nucleation temperature depends on the gas concentration: the higher the gas concentration, the lower the bubble nucleation temperature. Also, the long-term diffusion-dominated bubble growth is governed by the gas concentration. The radius of the bubbles grows as R(t) ∝ t 1/3 for air-equilibrated and air-oversaturated water. In contrast, in partially degassed water, the growth is much slower since, even for the highest temperature we achieve, the water remains undersaturated.

SELECTION OF CITATIONS
SEARCH DETAIL
...