Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
EBioMedicine ; 103: 105143, 2024 May.
Article in English | MEDLINE | ID: mdl-38691938

ABSTRACT

BACKGROUND: Argon (Ar) has been proposed as a potential therapeutic agent in multiple clinical conditions, specifically in organ protection. However, conflicting data on pre-clinical models, together with a great variability in Ar administration protocols and outcome assessments, have been reported. The aim of this study was to review evidence on treatment with Ar, with an extensive investigation on its neuroprotective effect, and to summarise all tested administration protocols. METHODS: Using the PubMed database, all existing pre-clinical and clinical studies on the treatment with Ar were systematically reviewed (registration: https://doi.org/10.17605/OSF.IO/7983D). Study titles and abstracts were screened, extracting data from relevant studies post full-text review. Exclusion criteria included absence of full text and non-English language. Furthermore, meta-analysis was also performed to assess Ar potential as neuroprotectant agent in different clinical conditions: cardiac arrest, traumatic brain injury, ischemic stroke, perinatal hypoxic-ischemic encephalopathy, subarachnoid haemorrhage. Standardised mean differences for neurological, cognitive and locomotor, histological, and physiological measures were evaluated, through appropriate tests, clinical, and laboratory variables. In vivo studies were evaluated for risk of bias using the Systematic Review Center for Laboratory Animal Experimentation tool, while in vitro studies underwent assessment with a tool developed by the Office of Health Assessment and Translation. FINDINGS: The systematic review detected 60 experimental studies (16 in vitro, 7 ex vivo, 31 in vivo, 6 with both in vitro and in vivo) investigating the role of Ar. Only one clinical study was found. Data from six in vitro and nineteen in vivo studies were included in the meta-analyses. In pre-clinical models, Ar administration resulted in improved neurological, cognitive and locomotor, and histological outcomes without any change in physiological parameters (i.e., absence of adverse events). INTERPRETATION: This systematic review and meta-analysis based on experimental studies supports the neuroprotective effect of Ar, thus providing a rationale for potential translation of Ar treatment in humans. Despite adherence to established guidelines and methodologies, limitations in data availability prevented further analyses to investigate potential sources of heterogeneity due to study design. FUNDING: This study was funded in part by Italian Ministry of Health-Current researchIRCCS and by Ministero della Salute Italiano, Ricerca Finalizzata, project no. RF 2019-12371416.


Subject(s)
Argon , Neuroprotective Agents , Argon/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Humans , Animals , Administration, Inhalation , Disease Models, Animal , Drug Evaluation, Preclinical
2.
Article in English | MEDLINE | ID: mdl-38677352

ABSTRACT

BACKGROUND: Inconsistent data exists regarding the risk factors for bronchoalveolar lavage (BAL) positivity in lung donors, the incidence of donor-derived infections (DDI), and the effect of BAL positivity on lung transplant (LuTx) recipients' outcome. METHODS: A retrospective analysis was conducted on consecutive LuTx at a single center from January 2016 to December 2022. Donors' data, including characteristics, graft function and BAL samples were collected pre-procurement. Recipients underwent BAL before LuTx and about the 3rd, 7th and 14th day after LuTx. A DDI was defined as BAL positivity (bacterial growth ≥104 colony forming units) for identical bacterial species between donor and recipient. Recipients' pre-operative characteristics, intra-operative management, and post-operative outcomes were assessed. Two recipient cohorts were identified based on lung colonization status before undergoing LuTx. RESULTS: Out of 188 LuTx procedures performed, 169 were analyzed. Thirty-six percent of donors' BAL tested positive. Donors' characteristics and graft function at procurement were not associated with BAL positivity. Fourteen DDI were detected accounting for 23% of recipients receiving a graft with a positive BAL. Only among uncolonized recipients, receiving a graft with positive BAL is associated with higher likelihood of requiring invasive ventilation at 72 hours after LuTx on higher positive end-expiratory pressure levels having lower PaO2/FiO2, prolonged duration of mechanical ventilation and longer ICU stay. No difference in hospital length of stay was observed. CONCLUSIONS: Receiving a graft with a positive BAL, which is poorly predicted by donors' characteristics, carries the risk of developing a DDI and is associated to a worse early graft function among uncolonized recipients.

3.
J Crit Care ; 82: 154759, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38461659

ABSTRACT

OBJECTIVES: Although respiratory failure is the most common feature in coronavirus disease 2019 (COVID-19), abdominal organ involvement is likewise frequently observed. To investigate visceral and thoracic circulation and abdominal organ damage in COVID-19 patients. MATERIALS AND METHODS: A monocentric observational study was carried on. In COVID-19 patients affected by acute respiratory distress syndrome (ARDS) (n = 31) or mild pneumonia (n = 60) thoracoabdominal circulation was evaluated using Doppler-ultrasound and computed tomography. The study also included non-COVID-19 patients affected by ARDS (n = 10) or portal hypertension (n = 10) for comparison of the main circulatory changes. RESULTS: Patients affected by COVID-19 ARDS showed hyperdynamic visceral flow and increased portal velocity, hepatic artery resistance-index, and spleen diameter relative to those with mild-pneumonia (p = 0.001). Splanchnic circulatory parameters significantly correlated with the main respiratory indexes (p < 0.001) and pulmonary artery diameter (p = 0.02). The chest and abdominal vascular remodeling pattern of COVID-19 ARDS patients resembled the picture observed in the PH group, while differed from that of the non-COVID ARDS group. A more severe COVID-19 presentation was associated with worse liver dysfunction and enhanced inflammatory activation; these parameters both correlated with abdominal (p = 0.04) and chest imaging measures (p = 0.03). CONCLUSION: In COVID-19 ARDS patients there are abdominal and lung vascular modifications that depict a portal hypertension-like pattern. The correlation between visceral vascular remodeling, pulmonary artery enlargement, and organ damage in these critically ill patients is consistent with a portal hyperlfow-like syndrome that could contribute to the peculiar characteristics of respiratory failure in these patients. CLINICAL RELEVANCE STATEMENT: our data suggest that the severity of COVID-19 lung involvement is directly related to the development of a portal hyperflow-like syndrome. These observations should help in defining the need for a closer monitoring, but also to develop dedicated therapeutic strategies.


Subject(s)
COVID-19 , Hypertension, Portal , Respiratory Distress Syndrome , Humans , COVID-19/complications , COVID-19/physiopathology , Male , Female , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/diagnostic imaging , Middle Aged , Hypertension, Portal/physiopathology , Aged , SARS-CoV-2 , Tomography, X-Ray Computed , Ultrasonography, Doppler
4.
Sci Rep ; 14(1): 6040, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38472309

ABSTRACT

The partial understanding of the biological events that occur during normothermic machine perfusion (NMP) and particularly during prolonged perfusion might hinder its deployment in clinical transplantation. The aim of our study was to implement a rat model of prolonged NMP to characterize the bio-molecular phenotype and metabolism of the perfused organs. Livers (n = 5/group) were procured and underwent 4 h (NMP4h) or 12 h (NMP12h) NMP, respectively, using a perfusion fluid supplemented with an acellular oxygen carrier. Organs that were not exposed to any procedure served as controls (Native). All perfused organs met clinically derived viability criteria at the end of NMP. Factors related to stress-response and survival were increased after prolonged perfusion. No signs of oxidative damage were detected in both NMP groups. Evaluation of metabolite profiles showed preserved mitochondrial function, activation of Cori cycle, induction of lipolysis, acetogenesis and ketogenesis in livers exposed to 12 h-NMP. Increased concentrations of metabolites involved in glycogen synthesis, glucuronidation, bile acid conjugation, and antioxidant response were likewise observed. In conclusion, our NMP12h model was able to sustain liver viability and function, thereby deeply changing cell homeostasis to maintain a newly developed equilibrium. Our findings provide valuable information for the implementation of optimized protocols for prolonged NMP.


Subject(s)
Liver Transplantation , Rats , Animals , Liver Transplantation/methods , Organ Preservation/methods , Liver/metabolism , Perfusion/methods , Phenotype
5.
J Appl Physiol (1985) ; 136(4): 966-976, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38420681

ABSTRACT

It is commonly assumed that changes in plasma strong ion difference (SID) result in equal changes in whole blood base excess (BE). However, at varying pH, albumin ionic-binding and transerythrocyte shifts alter the SID of plasma without affecting that of whole blood (SIDwb), i.e., the BE. We hypothesize that, during acidosis, 1) an expected plasma SID (SIDexp) reflecting electrolytes redistribution can be predicted from albumin and hemoglobin's charges, and 2) only deviations in SID from SIDexp reflect changes in SIDwb, and therefore, BE. We equilibrated whole blood of 18 healthy subjects (albumin = 4.8 ± 0.2 g/dL, hemoglobin = 14.2 ± 0.9 g/dL), 18 septic patients with hypoalbuminemia and anemia (albumin = 3.1 ± 0.5 g/dL, hemoglobin = 10.4 ± 0.8 g/dL), and 10 healthy subjects after in vitro-induced isolated anemia (albumin = 5.0 ± 0.2 g/dL, hemoglobin = 7.0 ± 0.9 g/dL) with varying CO2 concentrations (2-20%). Plasma SID increased by 12.7 ± 2.1, 9.3 ± 1.7, and 7.8 ± 1.6 mEq/L, respectively (P < 0.01) and its agreement (bias[limits of agreement]) with SIDexp was strong: 0.5[-1.9; 2.8], 0.9[-0.9; 2.6], and 0.3[-1.4; 2.1] mEq/L, respectively. Separately, we added 7.5 or 15 mEq/L of lactic or hydrochloric acid to whole blood of 10 healthy subjects obtaining BE of -6.6 ± 1.7, -13.4 ± 2.2, -6.8 ± 1.8, and -13.6 ± 2.1 mEq/L, respectively. The agreement between ΔBE and ΔSID was weak (2.6[-1.1; 6.3] mEq/L), worsening with varying CO2 (2-20%): 6.3[-2.7; 15.2] mEq/L. Conversely, ΔSIDwb (the deviation of SID from SIDexp) agreed strongly with ΔBE at both constant and varying CO2: -0.1[-2.0; 1.7], and -0.5[-2.4; 1.5] mEq/L, respectively. We conclude that BE reflects only changes in plasma SID that are not expected from electrolytes redistribution, the latter being predictable from albumin and hemoglobin's charges.NEW & NOTEWORTHY This paper challenges the assumed equivalence between changes in plasma strong ion difference (SID) and whole blood base excess (BE) during in vitro acidosis. We highlight that redistribution of strong ions, in the form of albumin ionic-binding and transerythrocyte shifts, alters SID without affecting BE. We demonstrate that these expected SID alterations are predictable from albumin and hemoglobin's charges, or from the noncarbonic whole blood buffer value, allowing a better interpretation of SID and BE during in vitro acidosis.


Subject(s)
Acid-Base Imbalance , Acidosis , Anemia , Humans , Acid-Base Equilibrium , Hydrogen-Ion Concentration , Carbon Dioxide , Electrolytes , Hemoglobins , Albumins/adverse effects
6.
Crit Care Explor ; 6(2): e1039, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343444

ABSTRACT

OBJECTIVES: In patients with COVID-19 respiratory failure, controlled mechanical ventilation (CMV) is often necessary during the acute phases of the disease. Weaning from CMV to pressure support ventilation (PSV) is a key objective when the patient's respiratory functions improve. Limited evidence exists regarding the factors predicting a successful transition to PSV and its impact on patient outcomes. DESIGN: Retrospective observational cohort study. SETTING: Twenty-four Italian ICUs from February 2020 to May 2020. PATIENTS: Mechanically ventilated ICU patients with COVID-19-induced respiratory failure. INTERVENTION: The transition period from CMV to PSV was evaluated. We defined it as "failure of assisted breathing" if the patient returned to CMV within the first 72 hours. MEASUREMENTS AND MAIN RESULTS: Of 1260 ICU patients screened, 514 were included. Three hundred fifty-seven patients successfully made the transition to PSV, while 157 failed. Pao2/Fio2 ratio before the transition emerged as an independent predictor of a successful shift (odds ratio 1.00; 95% CI, 0.99-1.00; p = 0.003). Patients in the success group displayed a better trend in Pao2/Fio2, Paco2, plateau and peak pressure, and pH level. Subjects in the failure group exhibited higher ICU mortality (hazard ratio 2.08; 95% CI, 1.42-3.06; p < 0.001), an extended ICU length of stay (successful vs. failure 21 ± 14 vs. 27 ± 17 d; p < 0.001) and a longer duration of mechanical ventilation (19 ± 18 vs. 24 ± 17 d, p = 0.04). CONCLUSIONS: Our study emphasizes that the Pao2/Fio2 ratio was the sole independent factor associated with a failed transition from CMV to PSV. The unsuccessful transition was associated with worse outcomes.

7.
J Intensive Care Med ; 39(5): 420-428, 2024 May.
Article in English | MEDLINE | ID: mdl-37926984

ABSTRACT

Purpose: This study aimed to investigate the effects of inspired oxygen fraction (FiO2) and positive end-expiratory pressure (PEEP) on gas exchange in mechanically ventilated patients with COVID-19. Methods: Two FiO2 (100%, 40%) were tested at 3 decreasing levels of PEEP (15, 10, and 5 cmH2O). At each FiO2 and PEEP, gas exchange, respiratory mechanics, hemodynamics, and the distribution of ventilation and perfusion were assessed with electrical impedance tomography. The impact of FiO2 on the intrapulmonary shunt (delta shunt) was analyzed as the difference between the calculated shunt at FiO2 100% (shunt) and venous admixture at FiO2 40% (venous admixture). Results: Fourteen patients were studied. Decreasing PEEP from 15 to 10 cmH2O did not change shunt (24 [21-28] vs 27 [24-29]%) or venous admixture (18 [15-26] vs 23 [18-34]%) while partial pressure of arterial oxygen (FiO2 100%) was higher at PEEP 15 (262 [198-338] vs 256 [147-315] mmHg; P < .05). Instead when PEEP was decreased from 10 to 5 cmH2O, shunt increased to 36 [30-39]% (P < .05) and venous admixture increased to 33 [30-43]% (P < .05) and partial pressure of arterial oxygen (100%) decreased to 109 [76-177] mmHg (P < .05). At PEEP 15, administration of 100% FiO2 resulted in a shunt greater than venous admixture at 40% FiO2, ((24 [21-28] vs 18 [15-26]%, P = .005), delta shunt 5.5% (2.3-8.8)). Compared to PEEP 10, PEEP of 5 and 15 cmH2O resulted in decreased global and pixel-level compliance. Cardiac output at FiO2 100% resulted higher at PEEP 5 (5.4 [4.4-6.5]) compared to PEEP 10 (4.8 [4.1-5.5], P < .05) and PEEP 15 cmH2O (4.7 [4.5-5.4], P < .05). Conclusion: In this study, PEEP of 15 cmH2O, despite resulting in the highest oxygenation, was associated with overdistension. PEEP of 5 cmH2O was associated with increased shunt and alveolar collapse. Administration of 100% FiO2 was associated with an increase in intrapulmonary shunt in the setting of high PEEP. Trial registration: NCT05132933.


Subject(s)
COVID-19 , Lung Diseases , Respiratory Distress Syndrome , Humans , Respiration, Artificial , Respiratory Distress Syndrome/therapy , COVID-19/complications , COVID-19/therapy , Lung/diagnostic imaging , Positive-Pressure Respiration/methods , Respiratory Mechanics , Oxygen
9.
ASAIO J ; 70(3): e49-e52, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37949061

ABSTRACT

Single lung transplantation (LUTX) can be the last therapeutic option for a growing cohort of patients suffering from end-stage respiratory failure. Postoperative ventilatory management of single LUTX recipients is challenged by the coexistence of the diseased native lung and a healthy-but fragile-graft. In this case report, in a single LUTX recipient with idiopathic pulmonary fibrosis, regional ventilation ( ), perfusion ( ), and / matching and subsequent measurement of shunt fraction ( Qs / Qt ) and alveolar dead space ( Vd / Vt ) were obtained by integrating electrical impedance tomography (EIT) with volumetric capnography and pulmonary thermodilution technique. Although the preoperative pulmonary scintigraphy showed predominant right lung perfusion (79.8% vs. 20.2%), the EIT documented the postoperative re-establishment of between the lungs (demonstrating the adequate functioning of vascular anastomoses), the diversion of to the graft and similar global Qs / Qt (17%) and Vd / Vt (29%) between native and graft lung. Electrical impedance tomography mapping allowed regional Qs / Qt and Vd / Vt assessment: the native right lung had a completely deranged distribution of and ( Qs / Qt 25%, Vd / Vt 46%), whereas the graft showed normal coupling of and ( Qs / Qt 8%, Vd / Vt 12%). Electrical impedance tomography may allow noninvasive, repeatable, bedside assessments of the lung / coupling after single LUTX.


Subject(s)
Lung Transplantation , Lung , Humans , Electric Impedance , Lung/diagnostic imaging , Perfusion , Tomography/methods
10.
Intensive Care Med Exp ; 11(1): 77, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962702

ABSTRACT

Extracorporeal life support (ECLS) for acute respiratory failure encompasses veno-venous extracorporeal membrane oxygenation (V-V ECMO) and extracorporeal carbon dioxide removal (ECCO2R). V-V ECMO is primarily used to treat severe acute respiratory distress syndrome (ARDS), characterized by life-threatening hypoxemia or ventilatory insufficiency with conventional protective settings. It employs an artificial lung with high blood flows, and allows improvement in gas exchange, correction of hypoxemia, and reduction of the workload on the native lung. On the other hand, ECCO2R focuses on carbon dioxide removal and ventilatory load reduction ("ultra-protective ventilation") in moderate ARDS, or in avoiding pump failure in acute exacerbated chronic obstructive pulmonary disease. Clinical indications for V-V ECLS are tailored to individual patients, as there are no absolute contraindications. However, determining the ideal timing for initiating extracorporeal respiratory support remains uncertain. Current ECLS equipment faces issues like size and durability. Innovations include intravascular lung assist devices (ILADs) and pumpless devices, though they come with their own challenges. Efficient gas exchange relies on modern oxygenators using hollow fiber designs, but research is exploring microfluidic technology to improve oxygenator size, thrombogenicity, and blood flow capacity. Coagulation management during V-V ECLS is crucial due to common bleeding and thrombosis complications; indeed, anticoagulation strategies and monitoring systems require improvement, while surface coatings and new materials show promise. Moreover, pharmacokinetics during ECLS significantly impact antibiotic therapy, necessitating therapeutic drug monitoring for precise dosing. Managing native lung ventilation during V-V ECMO remains complex, requiring a careful balance between benefits and potential risks for spontaneously breathing patients. Moreover, weaning from V-V ECMO is recognized as an area of relevant uncertainty, requiring further research. In the last decade, the concept of Extracorporeal Organ Support (ECOS) for patients with multiple organ dysfunction has emerged, combining ECLS with other organ support therapies to provide a more holistic approach for critically ill patients. In this review, we aim at providing an in-depth overview of V-V ECMO and ECCO2R, addressing various aspects of their use, challenges, and potential future directions in research and development.

11.
Clin Transplant ; 37(12): e15122, 2023 12.
Article in English | MEDLINE | ID: mdl-37694497

ABSTRACT

INTRODUCTION: The postoperative hemodynamic management after lung transplant (LUTX) is guided by limited evidence. We aimed to describe and evaluate risk factors and outcomes of postoperative vasoactive support of LUTX recipients. METHODS: In a single-center retrospective analysis of consecutive adult LUTX, two cohorts were identified: (1) patients needing prolonged vasoactive support (>12 h from ICU admission) (VASO+); (2) or not (VASO-). Postoperative hemodynamic characteristics were thoroughly analyzed. Risk factors and outcomes of VASO+ versus VASO- cohorts were assessed by multivariate logistic regression and propensity score matching. RESULTS: One hundred and thirty-eight patients were included (86 (62%) VASO+ versus 52 (38%) VASO-). Vasopressors (epinephrine, norepinephrine, dopamine) were used in the first postoperative days (vasoactive inotropic score at 12 h: 6 [4-12]), while inodilators (dobutamine, levosimendan) later. Length of vasoactive support was 3 [2-4] days. Independent predictors of vasoactive use were: LUTX indication different from cystic fibrosis (p = .003), higher Oto score (p = .020), longer cold ischemia time (p = .031), but not preoperative cardiac catheterization. VASO+ patients showed concomitant hemodynamic and graft impairment, with longer mechanical ventilation (p = .010), higher primary graft dysfunction (PGD) grade at 72 h (PGD grade > 0 65% vs. 31%, p = .004, OR 4.2 [1.54-11.2]), longer ICU (p < .001) and hospital stay (p = .013). Levosimendan as a second-line inodilator appeared safe. CONCLUSIONS: Vasoactive support is frequently necessary after LUTX, especially in recipients of grafts of lesser quality. Postoperative hemodynamic dysfunction requiring vasopressor support and graft dysfunction may represent a clinical continuum with immediate and long-term consequences. Further studies may elucidate if this represents a possible treatable condition.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Adult , Humans , Retrospective Studies , Simendan/pharmacology , Lung Transplantation/adverse effects , Norepinephrine , Vasoconstrictor Agents/therapeutic use , Hemodynamics , Primary Graft Dysfunction/etiology
13.
Crit Care Med ; 51(5): 619-631, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36867727

ABSTRACT

OBJECTIVES: To determine the prevalence and outcomes associated with hemorrhage, disseminated intravascular coagulopathy, and thrombosis (HECTOR) complications in ICU patients with COVID-19. DESIGN: Prospective, observational study. SETTING: Two hundred twenty-nine ICUs across 32 countries. PATIENTS: Adult patients (≥ 16 yr) admitted to participating ICUs for severe COVID-19 from January 1, 2020, to December 31, 2021. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: HECTOR complications occurred in 1,732 of 11,969 study eligible patients (14%). Acute thrombosis occurred in 1,249 patients (10%), including 712 (57%) with pulmonary embolism, 413 (33%) with myocardial ischemia, 93 (7.4%) with deep vein thrombosis, and 49 (3.9%) with ischemic strokes. Hemorrhagic complications were reported in 579 patients (4.8%), including 276 (48%) with gastrointestinal hemorrhage, 83 (14%) with hemorrhagic stroke, 77 (13%) with pulmonary hemorrhage, and 68 (12%) with hemorrhage associated with extracorporeal membrane oxygenation (ECMO) cannula site. Disseminated intravascular coagulation occurred in 11 patients (0.09%). Univariate analysis showed that diabetes, cardiac and kidney diseases, and ECMO use were risk factors for HECTOR. Among survivors, ICU stay was longer (median days 19 vs 12; p < 0.001) for patients with versus without HECTOR, but the hazard of ICU mortality was similar (hazard ratio [HR] 1.01; 95% CI 0.92-1.12; p = 0.784) overall, although this hazard was identified when non-ECMO patients were considered (HR 1.13; 95% CI 1.02-1.25; p = 0.015). Hemorrhagic complications were associated with an increased hazard of ICU mortality compared to patients without HECTOR complications (HR 1.26; 95% CI 1.09-1.45; p = 0.002), whereas thrombosis complications were associated with reduced hazard (HR 0.88; 95% CI 0.79-0.99, p = 0.03). CONCLUSIONS: HECTOR events are frequent complications of severe COVID-19 in ICU patients. Patients receiving ECMO are at particular risk of hemorrhagic complications. Hemorrhagic, but not thrombotic complications, are associated with increased ICU mortality.


Subject(s)
COVID-19 , Thrombosis , Adult , Humans , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Prospective Studies , Critical Illness , Thrombosis/epidemiology , Thrombosis/etiology , Critical Care , Hemorrhage/epidemiology , Hemorrhage/etiology , Retrospective Studies
14.
Minerva Anestesiol ; 89(9): 773-782, 2023 09.
Article in English | MEDLINE | ID: mdl-36951601

ABSTRACT

BACKGROUND: Extracorporeal carbon dioxide removal (ECCO2R) promotes protective ventilation in patients with acute respiratory failure, but devices with high CO2 extraction capacity are required for clinically relevant impact. This study evaluates three novel low-flow techniques based on dialysate acidification, also combined with renal replacement therapy, and metabolic control. METHODS: Eight swine were connected to a low-flow (350 mL/min) extracorporeal circuit including a dialyzer with a closed-loop dialysate circuit, and two membrane lungs on blood (MLb) and dialysate (MLd), respectively. The following 2-hour steps were performed: 1) MLb-start (MLb ventilated); 2) MLbd-start (MLb and MLd ventilated); 3) HLac (lactic acid infusion before MLd); 4) HCl-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate); 5) HCl-ßHB-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate and sodium 3-hydroxybutyrate). Caloric and fluid inputs, temperature, blood glucose and arterial carbon dioxide pressure were kept constant. RESULTS: The total MLs CO2 removal in HLac (130±25 mL/min), HCl-NaLac (130±21 mL/min) and HCl-ßHB-NaLac (124±18 mL/min) were higher compared with MLbd-start (81±15 mL/min, P<0.05) and MLb-start (55±7 mL/min, P<0.05). Minute ventilation in HLac (4.3±0.9 L/min), HCl-NaLac (3.6±0.8 L/min) and HCl-ßHB-NaLac (3.6±0.8 L/min) were lower compared to MLb-start (6.2±1.1 L/min, P<0.05) and MLbd-start (5.8±2.1 L/min, P<0.05). Arterial pH was 7.40±0.03 at MLb-start and decreased only during HCl-ßHB-NaLac (7.35±0.03, P<0.05). No relevant changes in electrolyte concentrations, hemodynamics and significant adverse events were detected. CONCLUSIONS: The three techniques achieved a significant extracorporeal CO2 removal allowing a relevant reduction in minute ventilation with a sufficient safety profile.


Subject(s)
Carbon Dioxide , Respiration, Artificial , Animals , Swine , Respiration, Artificial/methods , Sodium Lactate , Hydrochloric Acid , Hydrogen-Ion Concentration , Dialysis Solutions
15.
Transpl Int ; 36: 10690, 2023.
Article in English | MEDLINE | ID: mdl-36846600

ABSTRACT

Donation after cardiac death (DCD) donors are still subject of studies. In this prospective cohort trial, we compared outcomes after lung transplantation (LT) of subjects receiving lungs from DCD donors with those of subjects receiving lungs from donation after brain death (DBD) donors (ClinicalTrial.gov: NCT02061462). Lungs from DCD donors were preserved in-vivo through normothermic ventilation, as per our protocol. We enrolled candidates for bilateral LT ≥14 years. Candidates for multi-organ or re-LT, donors aged ≥65 years, DCD category I or IV donors were excluded. We recorded clinical data on donors and recipients. Primary endpoint was 30-day mortality. Secondary endpoints were: duration of mechanical ventilation (MV), intensive care unit (ICU) length of stay, severe primary graft dysfunction (PGD3) and chronic lung allograft dysfunction (CLAD). 121 patients (110 DBD Group, 11 DCD Group) were enrolled. 30-day mortality and CLAD prevalence were nil in the DCD Group. DCD Group patients required longer MV (DCD Group: 2 days, DBD Group: 1 day, p = 0.011). ICU length of stay and PGD3 rate were higher in DCD Group but did not significantly differ. LT with DCD grafts procured with our protocols appears safe, despite prolonged ischemia times.


Subject(s)
Lung Transplantation , Tissue and Organ Procurement , Humans , Prospective Studies , Retrospective Studies , Tissue Donors , Lung Transplantation/methods , Lung , Death , Brain Death , Ischemia , Perfusion/methods , Graft Survival
17.
Blood Rev ; 58: 101013, 2023 03.
Article in English | MEDLINE | ID: mdl-36117056

ABSTRACT

This article presents the results of group discussion among an ad hoc constituted panel of experts aimed at identifying and addressing unmet clinical needs (UCNs) in the management of infectious risk associated with eculizumab or new terminal complement inhibitors (CIs) in paroxysmal nocturnal hemoglobinuria (PNH). With the Delphi technique, the most clinically relevant UCNs in PNH patients candidate to or on terminal CI were selected. They resulted to be: optimizing the infection prevention measures; developing non pharmacological infectious risk-mitigation strategies; improving the management of disease exacerbation during infectious complications. For each of these issues consensus opinions were provided and, when appropriate, proposals for advancement in clinical practice were addressed. The hope is that this comprehensive overview will serve to improve the practice of CIs therapy and inform the design and implementation of new studies in the field.


Subject(s)
Hemoglobinuria, Paroxysmal , Humans , Hemoglobinuria, Paroxysmal/complications , Hemoglobinuria, Paroxysmal/drug therapy , Complement Inactivating Agents/pharmacology , Complement Inactivating Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Consensus
18.
Front Physiol ; 13: 1009378, 2022.
Article in English | MEDLINE | ID: mdl-36338486

ABSTRACT

Non-carbonic buffer power (ßNC) of blood is a pivotal concept in acid-base physiology as it is employed in several acid-base evaluation techniques, including the Davenport nomogram and the Van Slyke equation used for Base excess estimation in blood. So far, ßNC has been assumed to be independent of metabolic acid-base status of blood, despite theoretical rationale for the contrary. In the current study, we used CO2 tonometry to assess ßNC in blood samples from 10 healthy volunteers, simultaneously analyzing the electrolyte shifts across the red blood cell membrane as these shifts translate the action of intracellular non-carbonic buffers to plasma. The ßNC of the blood was re-evaluated after experimental induction of metabolic acidosis obtained by adding a moderate or high amount of either hydrochloric or lactic acid to the samples. Moreover, the impact of ßNC and pCO2 on the Base excess of blood was examined. In the control samples, ßNC was 28.0 ± 2.5 mmol/L. In contrast to the traditional assumptions, our data showed that ßNC rose by 0.36 mmol/L for each 1 mEq/l reduction in plasma strong ion difference (p < 0.0001) and was independent of the acid used. This could serve as a protective mechanism that increases the resilience of blood to the combination of metabolic and respiratory acidosis. Sodium and chloride were the only electrolytes whose plasma concentration changed relevantly during CO2 titration. Although no significant difference was found between the electrolyte shifts in the two types of acidosis, we observed a slightly higher rate of chloride change in hyperchloremic acidosis, while the variation of sodium was more pronounced in lactic acidosis. Lastly, we found that the rise of ßNC in metabolic acidosis did not induce a clinically relevant bias in the calculation of Base excess of blood and confirmed that the Base excess of blood was little affected by a wide range of pCO2.

19.
JAMA Netw Open ; 5(10): e2238871, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36301541

ABSTRACT

Importance: Data on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2-related pneumonia are scarce. Objective: To evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU. Design, Setting, and Participants: This retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021. Exposures: COVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine). Main Outcomes and Measures: The incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders. Results: Among the 10 107 674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] age was 48 [28-64] years and 5 154 914 (51.0%) were female. Of the 7 863 417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4 010 343 [51.4%] female), 6 251 417 (79.5%) received an mRNA vaccine, 550 439 (7.0%) received an adenoviral vector vaccine, and 1 061 561 (13.5%) received a mix of vaccines and 4 497 875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dose was 0.03 (95% CI, 0.03-0.04; P < .001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P < .001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P < .001), primarily male individuals (110 patients [79.1%] vs 252 patients [60.9%]; P < .001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P < .001) and had higher ratio of arterial partial pressure of oxygen (Pao2) and fraction of inspiratory oxygen (FiO2) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P = .007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower Pao2/FiO2 at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients. Conclusions and Relevance: In this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status. These findings suggest a substantial reduction of the risk of developing COVID-19-related severe acute respiratory failure requiring ICU admission among vaccinated people.


Subject(s)
COVID-19 , Pneumonia , Humans , Male , Female , Middle Aged , Adult , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Critical Illness/therapy , COVID-19 Vaccines , Retrospective Studies , Cohort Studies , BNT162 Vaccine , Intensive Care Units , Pneumonia/epidemiology , Oxygen , mRNA Vaccines
20.
Br J Anaesth ; 129(5): 726-733, 2022 11.
Article in English | MEDLINE | ID: mdl-36096944

ABSTRACT

BACKGROUND: Acid-base status in full-term pregnant women is characterised by hypocapnic alkalosis. Whether this respiratory alkalosis is primary or consequent to changes in CSF electrolytes is not clear. METHODS: We enrolled third-trimester pregnant women (pregnant group) and healthy, non-pregnant women of childbearing age (controls) undergoing spinal anaesthesia for Caesarean delivery and elective surgery, respectively. Electrolytes, strong ion difference (SID), partial pressure of carbon dioxide ( [Formula: see text] ), and pH were measured in simultaneously collected CSF and arterial blood samples. RESULTS: All pregnant women (20) were hypocapnic, whilst only four (30%) of the controls (13) had an arterial [Formula: see text] <4.7 kPa (P<0.001). The incidence of hypocapnic alkalosis was higher in the pregnant group (65% vs 8%; P=0.001). The CSF-to-plasma Pco2 difference was significantly higher in pregnant women (1.5 [0.3] vs 1.0 [0.4] kPa; P<0.001), mainly because of a decrease in arterial Pco2 (3.9 [0.3] vs 4.9 [0.5] kPa; P<0.001). Similarly, the CSF-to-plasma difference in SID was less negative in pregnant women (-7.8 [1.4] vs -11.4 [2.3] mM; P<0.001), mainly because of a decreased arterial SID (31.5 [1.2] vs 36.1 [1.9] mM; P<0.001). The major determinant of the reduced plasma SID of pregnant women was a relative increase in plasma chloride compared with sodium. CONCLUSIONS: Primary hypocapnic alkalosis characterises third-trimester pregnant women leading to chronic acid-base adaptations of CSF and plasma. The compensatory SID reduction, mainly sustained by an increase in chloride concentration, is more pronounced in plasma than in CSF, as the decrease in Pco2 is more marked in this compartment. CLINICAL TRIAL REGISTRATION: NCT03496311.


Subject(s)
Alkalosis , Female , Humans , Pregnancy , Acid-Base Equilibrium , Bicarbonates , Carbon Dioxide , Chlorides , Electrolytes , Hydrogen-Ion Concentration , Pregnancy Trimester, Third , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL
...