Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 382(2275): 20230186, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38910399

ABSTRACT

Enhanced geothermal systems (EGSs) developed by hydraulic stimulation are promising for exploiting petrothermal heat by improving fluid pathways in low-permeable geothermal reservoir rocks. However, fluid injection into the subsurface can potentially cause large seismic events by reactivating pre-existing faults, which is a significant barrier to EGSs. The management of injection-induced seismicity is, therefore, essential for the success of EGSs. During the hydraulic stimulation of an EGS, fluid can be injected into a fault zone or into the rock matrix containing pre-existing faults adjacent to the injection well. The differences in hydromechanical responses between fluid injection into and adjacent to a fault have not been investigated in detail. Here, we performed triaxial fluid injection experiments involving injecting fluid directly and indirectly into a fault in granite rock samples to analyse the distinct hydromechanical responses and estimate the injection-induced seismicity in both cases. Our results suggest that in addition to directly injecting fluid into a critically stressed fault, injecting into nearly intact granite adjacent to the fault could also cause injection-induced seismic hazards owing to the high fluid pressure required to create new fractures in the granite matrix. It is, therefore, important to carefully identify pre-existing faults within tight reservoirs to avoid injecting fluid adjacent to them. Additionally, once prior unknown faults are delineated during hydraulic stimulation, appropriate shut-in strategies should be implemented immediately to mitigate seismic risks. This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.

2.
Sci Rep ; 13(1): 4437, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932087

ABSTRACT

The effect of normal stress variations on fault frictional strength has been extensively characterized in laboratory experiments and modelling studies based on a rate-and-state-dependent fault friction formalism. However, the role of pore pressure changes during injection-induced fault reactivation and associated frictional phenomena is still not well understood. We apply rate-and-state friction (RSF) theory in finite element models to investigate the effect of fluid pressurization rate on fault (re)activation and on the resulting frictional slip characteristics at the laboratory scale. We consider a stepwise injection scenario where each fluid injection cycle consists of a fluid pressurization phase followed by a constant fluid pressure phase. We first calibrate our model formulation to recently published laboratory results of injection-driven shear slip experiments. In a second stage, we perform a parametric study by varying fluid pressurization rates to cover a higher dimensional parameter space. We demonstrate that, for high permeability laboratory samples, the energy release rate associated with fault reactivation can be effectively controlled by a stepwise fluid injection scheme, i.e. by the applied fluid pressurization rate and the duration of the constant pressure phase between each successive fluid pressurization phase. We observe a gradual transition from fault creep to slow stick-slip as the fluid pressurization rate increases. Furthermore, computed peak velocities for an extended range of fluid pressurization rate scenarios (0.5 MPa/min to 10 MPa/min) indicate a non-linear (power-law) relationship between the imposed fluid pressurization rate and the peak slip velocities, and consequently with the energy release rate, for scenarios with a fluid pressurization rate higher than a critical value of 4 MPa/min. We also observe that higher pressurization rates cause a delay in the stress release by the fault. We therefore argue that by adopting a stepwise fluid injection scheme with lower fluid pressurization rates may provide the operator with a better control over potential induced seismicity. The implications for field-scale applications that we can derive from our study are limited by the high matrix and fault permeability of the selected sample and the direct hydraulic connection between the injection well and the fault, which may not necessarily represent the conditions typical for fracture dominated deep geothermal reservoirs. Nevertheless, our results can serve as a basis for further laboratory experiments and field-scale modelling studies focused on better understanding the impact of stepwise injection protocols on fluid injection-induced seismicity.

3.
Sci Rep ; 11(1): 6780, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33762643

ABSTRACT

The ability to control induced seismicity in energy technologies such as geothermal heat and shale gas is an important factor in improving the safety and reducing the seismic hazard of reservoirs. As fracture propagation can be unavoidable during energy extraction, we propose a new approach that optimises the radiated seismicity and hydraulic energy during fluid injection by using cyclic- and pulse-pumping schemes. We use data from laboratory-, mine-, and field-scale injection experiments performed in granitic rock and observe that both the seismic energy and the permeability-enhancement process strongly depend on the injection style and rock type. Replacing constant-flow-rate schemes with cyclic pulse injections with variable flow rates (1) lowers the breakdown pressure, (2) modifies the magnitude-frequency distribution of seismic events, and (3) has a fundamental impact on the resulting fracture pattern. The concept of fatigue hydraulic fracturing serves as a possible explanation for such rock behaviour by making use of depressurisation phases to relax crack-tip stresses. During hydraulic fatigue, a significant portion of the hydraulic energy is converted into rock damage and fracturing. This finding may have significant implications for managing the economic and physical risks posed to communities affected by fluid-injection-induced seismicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...