Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Orthop Surg ; 9(2): 215-220, 2017 May.
Article in English | MEDLINE | ID: mdl-28598001

ABSTRACT

OBJECTIVE: To report preoperative planning using 3D printing to plan thumb reconstructions with second toe transplant. METHODS: Between December 2013 and October 2015, the thumbs of five patients with grade 3 thumb defects were reconstructed using a wrap-around flap and second toe transplant aided by 3D printing technology. CT scans of hands and feet were analyzed using Boholo surgical simulator software (www.boholo.com). This allowed for the creation of a mirror image of the healthy thumb using the uninjured thumb. Using 3D images of the reconstructed thumb, a model of the big toe and the second toe was created to understand the dimensions of the donor site. This model was also used to repair the donor site defect by designing appropriate iliac bone and superficial circumflex iliac artery flaps. The polylactic acid model of the donor toes and reconstructed thumb was produced using 3D printing. Surgically, the wrap-around flap of the first dorsal metatarsal artery and vein combined with the joint and bone of the second toe was based upon the model donor site. Sensation was reconstructed by anastomosing the dorsal nerve of the foot and the plantar digital nerve of the great toe. Patients commenced exercises 2 weeks after surgery. RESULTS: All reconstructed thumbs survived, although partial flap necrosis occurred in one case. This was managed with regular dressing changes. Patients were followed up for 3-15 months. The lengths of the reconstructed thumbs are 34-49 mm. The widths of the thumb nail beds are 16-19 mm, and the thickness of the digital pulp is 16-20 mm. The thumb opposition function was 0-1.5 cm; the extension angle was 5°-20° (mean, 16°), and the angle of flexion was 38°-55° (mean, 47°). Two-point discrimination was 9-11 mm (mean, 9.6 mm). The reconstructed thumbs had good appearance, function and sensation. Based on the criteria set forth by the Standard on Approval of Reconstructed Thumb and Finger Functional Assessment of the Chinese Medical Association, the results were considered excellent for four cases and good for one case. The success rate was 100%. CONCLUSIONS: When planning a wrap-around flap and second toe transplant to reconstruct a thumb, both the donor and recipient sites can be modeled using 3D printing. This can shorten the operative time by supplying digital and accurate schematics for the operation. It can also optimize the function and appearance of the reconstructed thumb while minimizing damage to the donor site.


Subject(s)
Amputation, Traumatic/surgery , Finger Injuries/surgery , Printing, Three-Dimensional , Toes/transplantation , Adolescent , Adult , Humans , Male , Middle Aged , Postoperative Care/methods , Preoperative Care/methods , Tomography, X-Ray Computed , Transplant Donor Site , Young Adult
2.
Biosci Rep ; 34(3)2014 Jun 18.
Article in English | MEDLINE | ID: mdl-24724624

ABSTRACT

CCL2 [chemokine (C-C motif) ligand 2] contributes to the inflammation-induced neuropathic pain through activating VGSC (voltage-gated sodium channel)-mediated nerve impulse conduction, but the underlying mechanism is currently unknown. Our study aimed to investigate whether PKC (protein kinase C)-NF-κB (nuclear factor κB) is involved in CCL2-induced regulation of voltage-gated sodium Nav1.8 currents and expression. DRG (dorsal root ganglion) neurons were prepared from adult male Sprague-Dawley rats and incubated with various concentration of CCL2 for 24 h. Whole-cell patch-clamps were performed to record the Nav1.8 currents in response to the induction by CCL2. After being pretreated with 5 and10 nM CCL2 for 16 h, CCR2 [chemokine (C-C motif) receptor 2] and Nav1.8 expression significantly increased and the peak currents of Nav1.8 elevated from the baseline 46.53±4.53 pA/pF to 64.28±3.12 pA/pF following 10 nM CCL2 (P<0.05). Compared with the control, significant change in Nav1.8 current density was observed when the CCR2 inhibitor INCB3344 (10 nM) was applied. Furthermore, inhibition of PKC by AEB071 significantly eliminated CCL2-induced elevated Nav1.8 currents. In vitro PKC kinase assays and autoradiograms suggested that Nav1.8 within DRG neurons was a substrate of PKC and direct phosphorylation of the Nav1.8 channel by PKC regulates its function in these neurons. Moreover, p65 expression was significantly higher in CCL2-induced neurons (P<0.05), and was reversed by treatment with INCB3344 and AEB071. PKC-NF-κB are involved in CCL2-induced elevation of Nav1.8 current density by promoting the phosphorylation of Nav1.8 and its expression.


Subject(s)
Chemokine CCL2/metabolism , Ganglia, Spinal/metabolism , Gene Expression Regulation/physiology , NAV1.8 Voltage-Gated Sodium Channel/biosynthesis , Neurons/metabolism , Protein Kinase C/metabolism , Transcription Factor RelA/biosynthesis , Animals , Cells, Cultured , Ion Transport/physiology , Male , Phosphorylation/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...