Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Antimicrob Chemother ; 79(4): 758-766, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38340039

ABSTRACT

OBJECTIVES: To compare the differences in antibiotic use between COPD and non-COPD residents, and to explore the effect of COPD on antibiotic use. METHODS: Participants aged 40 years old or over from the Songjiang Adult Cohort were included. Information on prescription and baseline survey was collected based on the health information system. A logit-negative binomial Hurdle model was used to explore correlations between COPD and percentage of antibiotic use and average rate of antibiotic prescribing of different types of antibiotic. Multinomial logistic regression was used to assess the association between COPD and antimicrobial combination therapy and routes of administration. RESULTS: A total of 34576 individuals were included and 1594 (4.6%) were COPD patients. During the 6 years' follow-up, the percentage of antibiotic use for COPD patients was 98.4%, which was 7.88 (95%CI: 5.24-11.85) times of that for non-COPD patients after adjusting for potential confounders. The prescribing rate was 3220 prescriptions (95%CI: 3063.6-3385.2) per 1000 person-years for COPD patients, which was 1.96 (95%CI: 1.87-2.06) times of that for non-COPD patients. Other beta-lactam antibacterials, Macrolides, lincosamides and streptogramins, and quinolone antibacterials were the most commonly used types of antibiotic. Except for aminoglycoside antibacterials, both percentage of antibiotic use and rate of antibiotic prescription were increased in COPD patients. COPD patients were more likely to be prescribed a maximum of two antibiotics (OR=1.34, 95%CI: 1.20-1.50); and were more likely to use antibiotics intravenously (OR=2.77, 95%CI: 2.47-3.11). CONCLUSION: COPD patients were more likely to have increased antibiotic use in a large-scale population-based adult cohort, suggesting COPD patients are a high-priority group for the management of antibiotic use in communities.


Subject(s)
Health Information Systems , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Anti-Bacterial Agents/therapeutic use , Streptogramins , Drug Prescriptions , Pulmonary Disease, Chronic Obstructive/drug therapy , Practice Patterns, Physicians'
2.
Water Res ; 236: 119940, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37080106

ABSTRACT

Trace levels of antibiotics were frequently found in drinking-water, leading a growing concern that drinking-water is an important exposure source to antibiotics in humans. In this study, we investigated antibiotics in tap water and well water in two rural residential areas in Eastern China to assess the related human health exposure risks in drinking-water. Twenty-seven antibiotics were analyzed using ultra performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-MS/MS). The average daily dose (ADD) and the health risk quotient (HRQ) for exposure to antibiotics in humans were evaluated using 10000 times of Monte Carlo simulations. Ten antibiotics were detected in drinking-water samples, with the maximum concentrations of antibiotic mixture of 8.29 ng/L in tap water and 2.95 ng/L in well water, respectively. Macrolides and sulfonamides were the predominant contaminants and showed the seasonality. Azithromycin had the highest detection frequencies (79.71-100%), followed by roxithromycin (25.71-100%) and erythromycin (21.43-86.96%). The estimated ADD and HRQ for human exposure to antibiotic mixture through drinking-water was less than 0.01 µg/kg/day and 0.01, respectively, which varied over sites, water types, seasons and sex. Ingestion route was more important than dermal contact route (10-6 to 10-4 µg/kg/day magnitude vs. 10-11 to 10-8 µg/kg/day magnitude). Macrolides also contributed mainly to health exposure risks to antibiotics through drinking-water, whose HRQ accounted for 46% to 67% of the total HRQs. Although the individual antibiotic and their combined effects contributed to acceptable health risks for human, the long-term exposure patterns to low-dose antibiotics in drinking-water should not be ignored.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Anti-Bacterial Agents/analysis , Drinking Water/analysis , Environmental Monitoring , Chromatography, Liquid , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Macrolides/analysis , China , Risk Assessment
3.
Water Res ; 222: 118942, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35944410

ABSTRACT

Wastewater-based epidemiology (WBE) has potential to identify the epidemiological links between people, animals, and the environment, as part of antimicrobial resistance (AMR) surveillance. In this study, we investigated six wastewater treatment plants (WWTPs) serving six communities located in two regions in Eastern China: Site A in Zhejiang and site B in Jiangsu province to assess the public use of antimicrobial agents (AA). Fifty antimicrobials and 24 of their metabolites were quantified using ultraperformance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-MS/MS). Spatiotemporal trends were established for measured concentrations, daily loads, and population-normalised daily loads. Daily AA mass loads varied between 1.6 g/day and 324.6 g/day reflecting the WWTP scales, with macrolides and ß-lactams showing the highest overall environmental burden at 223.7 g/day and 173.7 g/day, respectively. Emissions of antibiotic residues from manufacturing have been observed, with the peak daily load 12-fold higher than the overall load from a community serving a population of over 600,000. Community exposure levels of 225.2 ± 156.2 mg/day/1000 inhabitant and 351.9 ± 133.5 mg/day/1000 inhabitant were recorded in site A and B, respectively. Paired parent-metabolites analysis identified a large proportion (64-78%) of un-metabolised metronidazole and clindamycin at site B, indicating improper disposal of unused drugs either in the community or in livestock production. Consumption levels, calculated via WBE, suggested relatively low antimicrobial usage in Eastern China compared to other areas in China. This first application of WBE in Eastern China to assess the community-wide exposure to AAs has potential to inform regional antimicrobial stewardship.


Subject(s)
Anti-Infective Agents , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents , China , Chromatography, Liquid , Humans , Tandem Mass Spectrometry/methods , Wastewater/chemistry , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical/analysis
4.
Front Immunol ; 13: 835671, 2022.
Article in English | MEDLINE | ID: mdl-35514987

ABSTRACT

Psoriasis is a chronic, systemic, immune-mediated inflammatory disorder that is associated with a significantly increased risk of cardiovascular disease (CVD). Studies have shown that psoriasis often coexists with atherosclerosis, a chronic inflammatory disease of large and medium-sized arteries, which is a major cause of CVD. Although the molecular mechanisms underlying this comorbidity are not fully understood, clinical studies have shown that when interleukin (IL)-17A inhibitors effectively improve psoriatic lesions, atherosclerotic symptoms are also ameliorated in patients with both psoriasis and atherosclerosis. Also, IL-17A levels are highly expressed in the psoriatic lesions and atherosclerotic plaques. These clinical observations implicit that IL-17A could be a crucial link for psoriasis and atherosclerosis and IL-17A-induced inflammatory responses are the major contribution to the pathogenesis of comorbid psoriasis and atherosclerosis. In this review, the current literature related to epidemiology, genetic predisposition, and inflammatory mechanisms of comorbidity of psoriasis and atherosclerosis is summarized. We focus on the immunopathological effects of IL-17A in both diseases. The goal of this review is to provide the theoretical base for future preventing or treating psoriasis patients with atherosclerosis comorbidity. The current evidence support the notion that treatments targeting IL-17 seem to be hold some promise to reduce cardiovascular risk in patients with psoriasis.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Psoriasis , Atherosclerosis/complications , Atherosclerosis/epidemiology , Cardiovascular Diseases/complications , Comorbidity , Humans , Interleukin-17/genetics , Psoriasis/drug therapy
5.
Antibiotics (Basel) ; 11(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35326870

ABSTRACT

BACKGROUND: Antibiotics are widely used in clinics, livestock farms and the aquaculture industry. A variety of antibiotics in foods and drinking water may lead to important and inadvertent dietary exposure However, the profile of dietary exposure to antibiotics in humans is not well-explored. East China is an economically developed area with a high usage of antibiotics and a high rate of antibiotic resistance (ABR). This study aimed to evaluate the total intake level of antibiotics in humans via foods and drinking water based on a community population in East China. METHODS: A total of 600 local residents from 194 households were recruited into this study in Deqing County of Zhejiang Province since June 2019. Each subject was asked to fill a food frequency questionnaire to report their daily consumption of foods and drinking water. Tap water samples were collected from ten households and twenty-one antibiotics of five categories were selected to detect in drinking water. Data of antibiotic residues in animal-derived foods were obtained from the notification of unqualified edible agricultural products after special supervision sampling inspection in Deqing County. The human dietary exposure to antibiotics was estimated by combining the data of antibiotic contamination in foods and drinking water, and the information of dietary consumption. RESULTS: Of twenty-one antibiotics selected, subjects were exposed to a total of sixteen antibiotics, ranging from 15.12 to 1128 µg/day via two main dietary routes (animal-derived foods and drinking water). The overall dietary exposure level varied greatly in the antibiotics detected and their sources. Compared with other antibiotics, enrofloxacin made the most contributions in terms of dietary exposure, with a median exposure level of 120.19 µg/day (IQR: 8.39-698.78 µg/day), followed by sulfamethazine (median: 32.95 µg/day, IQR: 2.77-162.55 µg/day) and oxytetracycline (median: 28.50 µg/day, IQR: 2.22-146.58 µg/day). The estimated exposure level via drinking water (at the ng/day level, median: 26.74 ng/day, IQR: 16.05-37.44 ng/day) was significantly and substantially lower than those via animal-derived foods (at the µg/day level, median: 216.38 µg/day, IQR: 87.52-323.00 µg/day). The overall dietary exposure level also showed differences in sex and age. Males and youths were more likely to be exposed to antibiotics via dietary routes than others. CONCLUSIONS: The community population investigated in East China was extensively exposed to multiple antibiotics via dietary routes. Long-term exposure to low-dose antibiotics in animal-derived foods was the primary dietary exposure route, compared with drinking water. Enrofloxacin contributed to the major body burden of dietary exposure, based on the combination of consumption of aquatic products and considerable enrofloxacin residues in them. Although the human dietary exposure level to antibiotics via drinking water and animal-derived foods ranged from ng/day to µg/L, their chronic toxicity and the accumulation and spread of ABR may be potential hazards to humans. Therefore, long-term monitoring of antibiotic contaminations in foods and drinking water, and human dietary antibiotic exposure is warranted.

6.
Materials (Basel) ; 15(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35160984

ABSTRACT

In this study, the influence of Er addition on the microstructure, type transformation of second phases, and corrosion resistance of an Al-Zn-Mg-Cu alloy were explored. The results revealed that the added Er element could significantly refine the alloy grains and change the second-phase composition at the grain boundary of the alloy. In the as-cast state, the Er element significantly enhanced the corrosion resistance of the alloy due to its refining effect on the grains and second phases at the grain boundary. The addition of the alloying element Er to the investigated alloy changed the type of corrosion attack on the alloy's surface. In the presence of Er, the dominant type of corrosion attack is pitting corrosion, while the alloy without Er is prone to intergranular corrosion attack. After a solution treatment, the Al8Cu4Er phase was formed, in which the interaction with the Cu element and the competitive growth relation to the Al3Er phase were the key factors influencing the corrosion resistance of the alloy. The anodic corrosion mechanism of the Al8Cu4Er and Al3Er phases evidently lowered the alloy corrosion rate, and the depth of the corrosion pit declined from 197 µm to 155 µm; however, further improvement of corrosion resistance was restricted by the morphology and size of the Al8Cu4Er phase after its formation and growth; therefore, adjusting the matching design of the Cu and Er elements can allow Er to improve the corrosion resistance of the Al-Zn-Mg-Cu aluminum alloy to the greatest extent.

SELECTION OF CITATIONS
SEARCH DETAIL
...