Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vasc Res ; 60(4): 234-244, 2023.
Article in English | MEDLINE | ID: mdl-37643584

ABSTRACT

INTRODUCTION: Culturing cerebrovascular smooth muscle cells (CVSMCs) in vitro can provide a model for studying many cerebrovascular diseases. This study describes a convenient and efficient method to obtain mouse CVSMCs by enzyme digestion. METHODS: Mouse circle of Willis was isolated, digested, and cultured with platelet-derived growth factor-BB (PDGF-BB) to promote CVSMC growth, and CVSMCs were identified by morphology, immunofluorescence analysis, and flow cytometry. The effect of PDGF-BB on vascular smooth muscle cell (VSMC) proliferation was evaluated by cell counting kit (CCK)-8 assay, morphological observations, Western blotting, and flow cytometry. RESULTS: CVSMCs cultured in a PDGF-BB-free culture medium had a typical peak-to-valley growth pattern after approximately 14 days. Immunofluorescence staining and flow cytometry detected strong positive expression of the cell type-specific markers alpha-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain 11 (SMMHC), smooth muscle protein 22 (SM22), calponin, and desmin. In the CCK-8 assay and Western blotting, cells incubated with PDGF-BB had significantly enhanced proliferation compared to those without PDGF-BB. CONCLUSION: We obtained highly purified VSMCs from the mouse circle of Willis using simple methods, providing experimental materials for studying the pathogenesis and treatment of neurovascular diseases in vitro. Moreover, the experimental efficiency improved with PDGF-BB, shortening the cell cultivation period.


Subject(s)
Circle of Willis , Muscle, Smooth, Vascular , Animals , Mice , Becaplermin/pharmacology , Becaplermin/metabolism , Proto-Oncogene Proteins c-sis/pharmacology , Proto-Oncogene Proteins c-sis/metabolism , Muscle, Smooth, Vascular/metabolism , Cells, Cultured , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Cell Movement
2.
Sci Rep ; 13(1): 3681, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36878975

ABSTRACT

We evaluated the effect of acute hypobaric hypoxia (AHH) on the hippocampal region of the brain in early-stage spontaneously hypertensive male rats. The rats were classified into a control (ground level; ~ 400 m altitude) group and an AHH experimental group placed in an animal hypobaric chamber at a simulated altitude of 5500 m for 24 h. RNA-Seq analysis of the brains and hippocampi showed that differentially expressed genes (DEGs) were primarily associated with ossification, fibrillar collagen trimer, and platelet-derived growth factor binding. The DEGs were classified into functional categories including general function prediction, translation, ribosomal structure and biogenesis, replication, recombination, and repair. Pathway enrichment analysis revealed that the DEGs were primarily associated with relaxin signaling, PI3K-Akt signaling, and amoebiasis pathways. Protein-protein interaction network analysis indicated that 48 DEGs were involved in both inflammation and energy metabolism. Further, we performed validation experiments to show that nine DEGs were closely associated with inflammation and energy metabolism, of which two (Vegfa and Angpt2) and seven (Acta2, Nfkbia, Col1a1, Edn1, Itga1, Ngfr, and Sgk1) genes showed up and downregulated expression, respectively. Collectively, these results indicated that inflammation and energy metabolism-associated gene expression in the hippocampus was altered in early-stage hypertension upon AHH exposure.


Subject(s)
Phosphatidylinositol 3-Kinases , Transcriptome , Male , Rats , Animals , Rats, Inbred SHR , Energy Metabolism , Hippocampus , Inflammation/genetics , Hypoxia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...