Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Article in English | MEDLINE | ID: mdl-38718353

ABSTRACT

A novel, water-stable, perylene diimide (PDI) based metal-organic framework (MOF), namely, U-1, has been synthesized for selective and sensitive detection of perfluorooctanoic acid (PFOA) in mixed aqueous solutions. The MOF shows highly selective fluorescence turn-on detection via the formation of a PFOA-MOF complex. This PFOA-MOF complex formation was confirmed by various spectroscopic techniques. The detection limit of the MOF for PFOA was found to be 1.68 µM in an aqueous suspension. Upon coating onto cellulose paper, the MOF demonstrated a significantly lower detection limit, down to 3.1 nM, which is mainly due to the concentrative effect of solid phase extraction (SPE). This detection limit is lower than the fluorescence sensors based on MOFs previously reported for PFAS detection. The MOF sensor is regenerable and capable of detecting PFOA in drinking and tap water samples. The PDI-MOF-based sensor reported herein represents a novel approach, relying on fluorescence turn-on response, that has not yet been thoroughly investigated for detecting per- and polyfluoroalkyl substances (PFAS) until now.

2.
Pharmaceutics ; 15(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38140130

ABSTRACT

Crocetin (CRT), an active compound isolated from saffron, exhibits several pharmacological activities, including anti-tumor and immune-regulatory activities, and is effective against myocardial ischemia and coronary heart disease; however, its low stability and solubility limit its clinical application. Therefore, we investigated CRT inclusion complexes (ICs) with three cyclodextrins-α-CD, HP-ß-CD, and γ-CD-suitable for oral administration prepared using an ultrasonic method. Fourier transform infrared spectroscopy and powder X-ray diffraction indicated that the crystalline state of CRT in ICs disappeared, and intermolecular interactions were observed between CRT and CDs. 1H nuclear magnetic resonance and phase solubility studies confirmed CRT encapsulation in the CD cavity and the formation of ICs. In addition, we observed the morphology of ICs using scanning electron microscopy. All ICs showed a high drug encapsulation efficiency (approximately 90%) with 6500-10,000 times better solubilities than those of the pure drug. CRT showed rapid dissolution, whereas pure CRT was water-insoluble. The formation of ICs significantly improved the storage stability of CRT under heat, light, and moisture conditions. Further, the peak time of CRT in rats significantly decreased, and the relative bioavailability increased by approximately 3-4 times. In addition, the oral bioavailability of CRT IC was evaluated. Notably, the absorption rate and degree of the drug in rats were improved. This study illustrated the potential applications of CRT/CD ICs in the food, healthcare, and pharmaceutical industries, owing to their favorable dissolution, solubility, stability, and oral bioavailability.

3.
Chemistry ; 29(72): e202301747, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37815852

ABSTRACT

This study reports the design of a donor-acceptor (D-A) molecule with two fluorene units on each side of a benzothiadiazole moiety, which allows multiple intermolecular interactions to compete with one another so as to induce the evolution of the metastable 2D platelets to the stable 2D platelets during the self-assembly of the D-A molecule. Importantly, the living seeded self-assembly of metastable and stable 2D structures with precisely controlled sizes can be conveniently achieved using an appropriate supersaturated level of a solution of the D-A molecule as the seeded growth medium that can temporarily hold the almost-proceeding spontaneous nucleation from competing with the seeded growth. The stable 2D platelets with smaller area sizes exhibit higher sensitivity to gaseous dimethyl sulfide, illustrating that the novel living self-assembly method provides more available functional structures with controlled sizes for practical applications. The key finding of this study is that the new living methodology is separated into two independent processes: the elaborate molecular design for various crystalline structures as seeds and the application of a supersaturated solution with appropriate levels as the growth medium to grow the uniform structures with controlled sizes; this would make convenient and possible the living seeded self-assembly of rich 1D, 2D, and 3D architectures.

4.
Zhonghua Nan Ke Xue ; 29(2): 165-173, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-37847089

ABSTRACT

OBJECTIVE: To explore the regulating mechanism of the Chinese medicinal compound Qianliexin Capsules (QLX) in the treatment of chronic nonbacterial prostatitis (CNP). METHODS: We randomly divided 18 SPF SD male rats into a normal control (n = 6), a model control (n = 6) and a QLX group (n = 6). After successful establishment of a CNP model in the latter two groups by injecting 50 µl 1% carrageenan bilaterally into the prostate, we treated the rats in the QLX group by intragastrical administration of QLX at 4 g/kg, tid, and those in the normal and model control groups with the same volume of pure water, all for 45 days. Then, we examined the possible lower urinary tract symptoms (LUTS) of CNP by detecting the prostate indexes, expression of the tissue inflammatory factor IL-1 ß, 24-hour urine volume and pain threshold reaction (PTR) time, and conducted a metabonomics analysis of the urine and plasma samples. RESULTS: Compared with the normal controls, the CNP model rats showed dramatically increased prostate coefficient (ï¼»0.75 ± 0.09ï¼½ ‰ vs ï¼»1.60 ± 0.35ï¼½ ‰, P < 0.01) and the expression of IL-1ß (ï¼»22.61 ± 2.77ï¼½ vs ï¼»55.12 ± 4.94ï¼½ ng/ml, P < 0.01), which were both decreased in the QLX group (ï¼»0.97 ± 0.10ï¼½ ‰ and ï¼»36.64 ± 7.25ï¼½ ng/ml) in comparison with those in the model controls (P < 0.01). The urine volume was remarkably reduced in the model control group compared with that in the normal controls (4 ml vs 16.38 ml, P < 0.01), and so was the PTR time (ï¼»13.83 ± 5.67ï¼½ vs ï¼»23.73 ± 2.52ï¼½ s, P < 0.01), while the levels of urea nitrogen (ï¼»23.06 ± 3.71ï¼½ vs ï¼»17.92 ± 1.41ï¼½ mg/dL, P < 0.01), creatinine (ï¼»48.08 ± 9.31ï¼½ vs ï¼»40.31 ± 3.53ï¼½ µmol/L, P < 0.01) and uric acid (ï¼»181.36 ± 64.06ï¼½ vs ï¼»84.33 ± 21.40ï¼½ µmol/L, P < 0.01) increased significantly. The animals in the QLX group exhibited significant improvement in the urine volume (ï¼»13.44 ± 2.26ï¼½ ml), PTR time (ï¼»31.45 ± 2.96ï¼½ s), urea nitrogen (ï¼»16.49 ± 1.86ï¼½ mg/dL), creatinine (ï¼»36.88 ± 7.98ï¼½ µmol/L) and uric acid (ï¼»117.47 ± 40.09ï¼½ µmol/L) in comparison with the model controls (P < 0.01). Metabonomics analysis revealed a reversing effect of QLX on the carrageenin-induced alteration in a variety of metabolites in the urine and serum, restoring the ratios of such metabolites as glycine, cysteine, ketoimine quinolinic acid, aminobutyraldehyde and triphosphate to almost normal. Pathway enrichment analysis showed that the main metabolic pathways were aspartate and glutamate pathways. The ratios of such metabolites as neuroside, adipic acid, diacylglycerol, choline lecithin and so on in the plasma sample were dramatically improved in the QLX group compared with those in the model controls (P < 0.01). CONCLUSION: QLX significantly improves the symptoms of CNP and has a definite effect on amino acids, phosphatidyl and other biomarkers through the tricarboxylic acid cycle, amino acid metabolism, lipid metabolism and other related pathways.


Subject(s)
Prostatitis , Humans , Rats , Male , Animals , Prostatitis/drug therapy , Prostatitis/metabolism , Carrageenan , Creatinine , Uric Acid , Nitrogen , Urea
5.
Nanotechnology ; 34(39)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37356427

ABSTRACT

An innovative Pd-Me (Pd-Cu, Pd-In and Pd-Sn) bimetallic catalyst supported on porous chelating DOWEX M4195 resin (D) was established to reduce the nitrate almost entirely and achieved high selectivity to the expected harmless form of nitrogen. In this study, sodium borohydride (NaBH4) was applied in preparing bimetallic catalysts by liquid-phase reduction as the prestoring reductant. Pd-In/D and Pd-Sn/D groups performed well in N2selectivity (all above 97%). In addition, Pd-In and Pd-Sn bimetallic catalysis yields higher selectivity towards N2than the Pd-Cu pair in the presence of HCO3-, Cl-, SO42-and humic acid. Likewise, in terms of N2selectivity, Pd-In/D and Pd-Sn/D bimetallic catalysts were superior to that of Pd-Cu/D (72.16%) in the municipal wastewater treatment plant sewage. The current results provide insight into the superb reactivity, excellent stability, and most important-extremely high harmless N2selectivity of Pd-In and Pd-Sn-based bimetallic catalysts in practical application and provide new ideas for enhancing the feasibility of the catalytic reduction of nitrate by minimizing environmentally harmful by-products.


Subject(s)
Nitrates , Water Purification , Water , Copper , Water Purification/methods , Catalysis
6.
J Am Chem Soc ; 145(17): 9771-9776, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37079712

ABSTRACT

The combination of solution self-assembly, which enables primary morphological control, and solid self-assembly, which enables the creation of novel properties, can lead to the formation of new functional materials that cannot be obtained using either technique alone. Herein, we report a cooperative solution/solid self-assembly strategy to fabricate novel two-dimensional (2D) platelets. Precursor 2D platelets with preorganized packing structure, shape, and size are formed via the living self-assembly of a donor-acceptor fluorophore and volatile coformer (i.e., propanol) in solution phase. After high-temperature annealing, propanol is released from the precursor platelets, and new continuous intermolecular hydrogen bonds are formed. The new 2D platelets formed retain the controllable morphologies originally defined by the solution phase living self-assembly but exhibit remarkable heat-resistant luminescence up to 200 °C and high two-photon absorption cross sections (i.e., >19,000 GM at 760 nm laser excitation).

7.
Sensors (Basel) ; 23(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36991828

ABSTRACT

Hydrogen peroxide (H2O2) is commonly used as an oxidizing, bleaching, or antiseptic agent. It is also hazardous at increased concentrations. It is therefore crucial to monitor the presence and concentration of H2O2, particularly in the vapor phase. However, it remains a challenge for many state-of-the-art chemical sensors (e.g., metal oxides) to detect hydrogen peroxide vapor (HPV) because of the interference of moisture in the form of humidity. Moisture, in the form of humidity, is guaranteed to be present in HPV to some extent. To meet this challenge, herein, we report a novel composite material based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) doped with ammonium titanyl oxalate (ATO). This material can be fabricated as a thin film on electrode substrates for use in chemiresistive sensing of HPV. The adsorbed H2O2 will react with ATO, causing a colorimetric response in the material body. Combining colorimetric and chemiresistive responses resulted in a more reliable dual-function sensing method that improved the selectivity and sensitivity. Moreover, the composite film of PEDOT:PSS-ATO could be coated with a layer of pure PEDOT via in situ electrochemical synthesis. The pure PEDOT layer was hydrophobic, shielding the sensor material underneath from coming into contact with moisture. This was shown to mitigate the interference of humidity when detecting H2O2. A combination of these material properties makes the double-layer composite film, namely PEDOT:PSS-ATO/PEDOT, an ideal sensor platform for the detection of HPV. For example, upon a 9 min exposure to HPV at a concentration of 1.9 ppm, the electrical resistance of the film increased threefold, surpassing the bounds of the safety threshold. Meanwhile, the colorimetric response observed was 2.55 (defined as the color change ratio), a ratio at which the color change could be easily seen by the naked eye and quantified. We expect that this reported dual-mode sensor will find extensive practical applications in the fields of health and security with real-time, onsite monitoring of HPV.

8.
Anal Chim Acta ; 1245: 340828, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36737131

ABSTRACT

This paper describes the development and proof-of-concept testing of an easy-to-use trace analysis technique, namely F-SPE, by coupling fluorescent sensor with solid phase extraction (SPE). F-SPE is a two-step methodology that concentrates an analyte from a liquid sample onto a fluorophore-modified membrane and measures the amount of analyte from the extent the extracted analyte quenches the emission of the fluorophore. By applying the principle of negligible depletion (ND) intrinsic to SPE, the procedure of F-SPE for analyzing a sample can be markedly simplified while maintaining the ability to detect analytes at low limits of detection (LOD). The merits of this approach are demonstrated by impregnating a SPE membrane with a perylene diimide (PDI) fluorophore, N,N'-di(nonyldecyl)-perylene-3,4,9,10-tetracarboxylic diimide (C9/9-PDI), for the low-level detection of organic amines (e.g., aniline) and amine-containing drugs (e.g., Kanamycin). The sensing mechanism is based on the donor-acceptor quenching of PDI by amines, which, when coupled with the concentrative nature of SPE, yields LODs for aniline and Kanamycin of 67 nM (∼6 ppb) and 32 nM (∼16 ppb), respectively.

9.
J Am Chem Soc ; 144(33): 15403-15410, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35952365

ABSTRACT

Fabrication of uniform two-dimensional (2D) structures from small molecules remains a formidable challenge for living self-assembly despite its great success in producing uniform one-dimensional (1D) structures. Here, we report the construction of unprecedented uniform 2D platelets with tailorable shapes and controlled sizes by creating new nuclei from a donor-acceptor (D-A) molecule and 1-hexanol to initiate 2D living self-assembly. We demonstrate that the D-A molecule undergoes 1-hexanol-induced twisting to form continuous alternative hydrogen bonds in-between under electrostatic attraction, which in turn forms a new nucleus. This connection architecture of the new nucleus allows to simultaneously regulate the growth rate of 1 in two dimensions to generate 2D platelets of distinct shapes through simply varying the amount of 1-hexanol relative to hexane. Furthermore, the living nature of the new nucleus enables seeded growth of complex concentric multiblock 2D heteroplatelets by sequential and alternative addition of different D-A molecules. Interestingly, the resulting 2D platelets obtained by such living self-assembly exhibit enhanced photostability compared to those obtained by conventional self-assembly without the involvement of 1-hexanol.


Subject(s)
Blood Platelets , Hydrogen Bonding
10.
Molecules ; 27(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35630687

ABSTRACT

Resibufogenin (RBG) is a natural medicinal ingredient with promising cardiac protection and antitumor activity. However, poor solubility and severe gastric mucosa irritation restrict its application in the pharmaceutical field. In this study, the inclusion complex of RBG with ß-cyclodextrin (ß-CD) and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) was prepared using the co-evaporation method, and the molar ratio of RBG to CD was determined to be approximately 1:2 by continuous variation plot for both CDs. The formation of inclusion complexes between RBG and each CD (RBG/ß-CD and RBG/HP-ß-CD) was evaluated by phase solubility study, Fourier transform infrared spectroscopy, and thin-layer chromatography. Powder X-ray diffraction and differential scanning calorimetry confirmed drug amorphization and encapsulation in the molecular cage for both CDs. Moreover, the inclusion complexes' morphologies were observed using scanning electron microscopy. The dissolution rate of the inclusion complexes was markedly improved compared to that of RBG, and the complexes retained their antitumor activity, as shown in the in vitro cytotoxicity assay on a human lung adenocarcinoma cancer (A549) cell line. Moreover, less gastric mucosal irritation was observed for the inclusion complex. Thus, the inclusion complex should be considered a promising strategy for the delivery of poorly water-soluble anticancer agents, such as RBG.


Subject(s)
Bufanolides , beta-Cyclodextrins , 2-Hydroxypropyl-beta-cyclodextrin , Bufanolides/pharmacology , Gastric Mucosa , Humans , beta-Cyclodextrins/chemistry
11.
ACS Sens ; 7(5): 1395-1402, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35420787

ABSTRACT

In this work, we report the fabrication of a two-member fluorescence sensor array that enables the assessment of three stages (fresh, slightly spoiled, and moderately or severely spoiled) of meat spoilage. The first member of the array, which has strong chalcogen bonding and sulfur-π interactions with organic sulfides, exhibits very high sensitivity, while the second member of the array, which has weak chalcogen bonding and sulfur-π interactions with organic sulfides, exhibits lower sensitivity. On the basis of the combined fluorescence responses of the two members, three stages of meat spoilage, including fresh, slightly spoiled, and moderately or severely spoiled, can be monitored. Notably, using the volatiles collected from 5 g of meat products over a short period of time (1 min), this two-member sensor array achieves sensitive responses to the organic sulfides emitted from the meats. The capacity of this method to rapidly assess meat freshness facilitates its practical application, as illustrated by the monitoring of the freshness of chicken and pork products in the real world.


Subject(s)
Chalcogens , Sulfides , Meat/analysis , Sulfur
12.
J Breath Res ; 16(3)2022 04 07.
Article in English | MEDLINE | ID: mdl-35303733

ABSTRACT

This study aims to develop an engineering solution to breath tests using an electronic nose (e-nose), and evaluate its diagnosis accuracy for silicosis. Influencing factors of this technique were explored. 398 non-silicosis miners and 221 silicosis miners were enrolled in this cross-sectional study. Exhaled breath was analyzed by an array of 16 organic nanofiber sensors along with a customized sample processing system. Principal component analysis was used to visualize the breath data, and classifiers were trained by two improved cost-sensitive ensemble algorithms (random forest and extreme gradient boosting) and two classical algorithms (K-nearest neighbor and support vector machine). All subjects were included to train the screening model, and an early detection model was run with silicosis cases in stage I. Both 5-fold cross-validation and external validation were adopted. Difference in classifiers caused by algorithms and subjects was quantified using a two-factor analysis of variance. The association between personal smoking habits and classification was investigated by the chi-square test. Classifiers of ensemble learning performed well in both screening and early detection model, with an accuracy range of 0.817-0.987. Classical classifiers showed relatively worse performance. Besides, the ensemble algorithm type and silicosis cases inclusion had no significant effect on classification (p> 0.05). There was no connection between personal smoking habits and classification accuracy. Breath tests based on an e-nose consisted of 16× sensor array performed well in silicosis screening and early detection. Raw data input showed a more significant effect on classification compared with the algorithm. Personal smoking habits had little impact on models, supporting the applicability of models in large-scale silicosis screening. The e-nose technique and the breath analysis methods reported are expected to provide a quick and accurate screening for silicosis, and extensible for other diseases.


Subject(s)
Electronic Nose , Silicosis , Breath Tests/methods , Cross-Sectional Studies , Exhalation , Humans , Silicosis/diagnosis
13.
Environ Res ; 201: 111577, 2021 10.
Article in English | MEDLINE | ID: mdl-34228952

ABSTRACT

Catalytic hydrogen reduction has appeared as a promising strategy for chemical denitrification with advantages of high activity and simple operation. However, the risk and low utilization of H2 is the disadvantage of catalytic hydrogen reduction. In recent years, catalytic reduction reactions in the presence of sodium borohydride (NaBH4) have been extensively studied. NaBH4 can be used as an electron source to generate electrons on the surface of the catalyst and can catalyze the reduction of pollutants. But it makes commercialization costly and causes significant environmental pollution if widely use NaBH4. In this study, we prepared supported Pd/Sn bimetallic nanoparticles which could adsorb NaBH4 during the preparation of the Pd/Sn bimetallic catalyst as the prestoring reductant. No additional reducing agent is required during nitrate reduction process. The performance and mechanism for nitrate reduction by using Pd/Sn bimetallic nanoparticles were discussed. Moreover, the catalyst D-Pd1/Sn1 reached a complete nitrate removal in the municipal wastewater treatment plant effluent water within 3 h. The results provide a prospect for denitrification in biological wastewater treatment plants.


Subject(s)
Nitrates , Reducing Agents , Water
14.
Sensors (Basel) ; 20(3)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050439

ABSTRACT

Perylene tetracarboxylic diimide (PDI) and its derivatives exhibit excellent thermal, chemical and optical stability, strong electron affinity, strong visible-light absorption and unique fluorescence on/off features. The combination of these features makes PDIs ideal molecular frameworks for development in a broad range of sensors for detecting environmental pollutants such as heavy metal ions (e.g., Cu2+, Cd2+, Hg2+, Pd2+, etc.), inorganic anions (e.g., F-, ClO4-, PO4-, etc.), as well as poisonous organic compounds such as nitriles, amines, nitroaromatics, benzene homologues, etc. In this review, we provide a comprehensive overview of the recent advance in research and development of PDI-based fluorescent sensors, as well as related colorimetric and multi-mode sensor systems, for environmental detection in aqueous, organic or mixed solutions. The molecular design of PDIs and structural optimization of the sensor system (regarding both sensitivity and selectivity) in response to varying analytes are discussed in detail. At the end, a perspective summary is provided covering both the key challenges and potential solutions for the future development of PDI-based optical sensors.

15.
ACS Sens ; 5(2): 571-579, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32013398

ABSTRACT

During the detection of industrial toxic gases, such as triethylamine (TEA), poor selectivity and negative humidity impact are still challenging issues. A frequently reported strategy is to employ molecular sieves or metal-organic framework (MOF) membranes so that interference derived from surrounding gases or water vapor can be blocked. Nevertheless, the decline in the response signal was also observed after coating these membranes. Herein, an alternative strategy that is based on a hydrophobic, TEA adsorption-selective p-n conjunction core-shell heterostructure is proposed and is speculated to simultaneously enhance selectivity, sensitivity, and humidity resistance. To verify the practicability of the proposed strategy, a thickness-tunable nitrogen-doped carbon (N-C) shell-coated α-Fe2O3 nano-olive (N-C@α-Fe2O3 NO)-based core-shell heterostructure that is obtained via a unique all-vapor-phase processing method is selected as the research example. After forming the core-shell heterostructure, a relatively hydrophobic and TEA adsorption-selective N-C@α-Fe2O3 NO surface was experimentally confirmed. Particularly, a chemiresistive sensor that comprises N-C@α-Fe2O3 NOs exhibits satisfactory selectivity and response magnitude to TEA when compared with the sensor using α-Fe2O3 NOs. The detection limit can even reduce to be 400 ppb at 250 °C. Furthermore, the sensor based on N-C@α-Fe2O3 NOs shows desirable humidity resistance within the relative humidity (RH) range of 30-90%. For practical usage, a sensing prototype based on the N-C@α-Fe2O3 NO probe is fabricated, and its satisfactory sensing performance further confirms the potential for future applications in industrial organic amine detection. These promising results show a bright future in enhancing the humidity resistance and selectivity as well as sensitivity of chemiresistive sensors by simply designing a hydrophobic and target gas adsorption (e.g., TEA) preferred p-n junction core-shell heterostructure.


Subject(s)
Ethylamines/chemistry , Humidity/standards , Hydrophobic and Hydrophilic Interactions , Adsorption
16.
Langmuir ; 35(37): 12009-12016, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31433938

ABSTRACT

The electrochemical behavior of organic conjugated semiconductors and their bulk materials is a considerable and irreplaceable parameter to maintain their diverse electronic or optoelectronic applications. In this paper, a series of n-type symmetrical perylene diimide derivatives (PTCDIs) with substituents (3,4-ethylenedioxythiophene (EDOT), cyclohexane, acetic acid, or propionic acid) at located the nitrogens imide position were synthesized, and their solubility, optical features, thermal stability, as well as solution-phase interfacial self-assembly into one-dimensional (1D) nanofibers and related morphology were discussed in detail. Moreover, a simple but effective method, in situ deposition following in situ self-assembly, was developed to construct uniform electrodes over a large area coated with networked PTCDI nanofibers. Then the electrochemical properties of the PTCDI nanofibers were researched in comparison with their molecules. The excellent variability at molecular or nanoscale morphological level will provide an interesting insight into the research of PTCDIs in a wide range applications of organic electronics.

17.
Sci Total Environ ; 691: 45-54, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31306876

ABSTRACT

This paper aims to validate the feasibility of hairwork dyeing effluent (HDE) reclamation using an ultrafiltration (UF)-reverse osmosis (RO) integrated membrane system combined with coagulation-flocculation and sedimentation acquiring the highest possible product water recovery rate along with both satisfactory separation performance and well controlled membrane fouling. Under the circumstance of only physical cleaning involved, the laboratory-scale test yielded a higher and satisfactory reuse ratio of 76% for HDE, and the corresponding RO product as reclaimed water contained only 223 mg·L-1 of TDS, 3.87 mg·mL-1 of DOC and 10.3 mg·mL-1 of total hardness, which was obviously better than the quality of existing feedwater in hairwork dyeing process. After each processing unit, the distributions of fulvic (region III) and humic (region V) organics decreased continuously, while an overall rising trend in distribution of protein-like organics (regions I and II) was observed. Contact angle for the fouled UF and RO membranes significantly increased by 19.5° and decreased by 19.7°, respectively, which suggested that different polarity of organic or inorganic adsorption rather than membrane roughness was the main factors affecting wetting properties of the fouled employed membranes. Both ATR-FTIR and XPS spectra indicated that organic fouling on UF membrane surface under harsh condition (RUF = 90%) was mild and tolerable, whereas a surprising amount of hydrophilic micromolecular organics riched in carboxyl and hydroxyl functional groups were absorbed on RO membrane surface after permeation.

18.
ACS Appl Mater Interfaces ; 10(23): 19764-19772, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29791128

ABSTRACT

Perylene tetracarboxylic diimide (PTCDI) derivatives have been extensively studied for one-dimensional (1D) self-assembled systems and for applications in photocatalysis. Herein, we constructed a PTCDI-based donor-acceptor (D-A) supramolecular system via in situ self-assembly on an indium tin oxide conductive glass surface. The self-assembled PTCDI nanostructures exhibit well-defined nanofibril morphologies and strong photocurrents. Interestingly, a strong and reversible electrochromic color change was observed during cyclic voltammetry. The color of the nanofibers changed from red to blue and then to violet as the reduction progressed to the radical anion and then to the dianion. This series of one-electron reductions was confirmed by UV absorption, electron paramagnetic resonance spectroscopy, and hydrazine reduction. Most importantly, these PTCDI nanofibers exhibit efficient photoelectrocatalytic hydrogen production with remarkable stability under xenon lamp illumination (λ ≥ 420 nm). Among the three nanofibers prepared, the fibers assembled from PTCDI molecule 2 were found to be the most effective catalyst with 30% Faradaic efficiency. In addition, the nanofibers produced hydrogen at a steady-state for more than 8 h and produced repeatable results in 3 consecutive testing cycles, giving them great potential for practical industrial applications. Under an applied bias voltage, the 1D intermolecular stacking along the long axis of the nanofibers affords efficient separation and migration of photogenerated charge carriers, which play a crucial role in the photoelectrocatalytic process. As a proof-of-concept, the D-A-structured PTCDI nanofibers presented herein may guide future research on photoelectrocatalysis based on self-assembled supramolecular systems by providing more options for material design of the catalysts to achieve greater efficiencies.

19.
Sensors (Basel) ; 17(11)2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29099088

ABSTRACT

This work reports on a novel fluorescent sensor 1 for Cd2+ ion based on the fluorophore of tetramethyl substituted bis(difluoroboron)-1,2-bis[(1H-pyrrol-2-yl)methylene]hydrazine (Me4BOPHY), which is modified with an electron donor moiety of N,N-bis(pyridin-2-ylmethyl)benzenamine. Sensor 1 has absorption and emission in visible region, at 550 nm and 675 nm, respectively. The long wavelength spectral response makes it easier to fabricate the fluorescence detector. The sensor mechanism is based on the tunable internal charge transfer (ICT) transition of molecule 1. Binding of Cd2+ ion quenches the ICT transition, but turns on the π - π transition of the fluorophore, thus enabling ratiometric fluorescence sensing. The limit of detection (LOD) was projected down to 0.77 ppb, which is far below the safety value (3 ppb) set for drinking water by World Health Organization. The sensor also demonstrates a high selectivity towards Cd2+ in comparison to other interferent metal ions.

20.
Nat Commun ; 8: 14462, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28194017

ABSTRACT

Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...