Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(14): 16536-16546, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617606

ABSTRACT

Unfavorable mobility ratios in heterogeneous reservoirs have resulted in progressively poor waterflood sweep efficiency and diminishing production. In order to address this issue, our study has developed amphiphilic-structured nanoparticles aimed at enhancing the microscopic displacement capability and oil displacement efficiency. First, the transport process of Janus nanoparticles in porous media was investigated. During the water flooding, Janus nanoparticle injection, and subsequent water flooding stages, the injection pressure increased in a "stepped" pattern, reaching 0.023, 0.029, and 0.038 MPa, respectively. Second, emulsification effects and emulsion viscosity experiments demonstrated that the amphiphilic structure improved the interaction at the oil-water interface, reducing the seepage resistance of the oil phase through emulsification. In porous media, Janus nanoparticles transported with water exhibit 'self-seeking oil' behavior and interact with the oil phase, reducing the viscosity of the oil phase from 19 to 5 mPa·s at 80 °C. Finally, the core model displacement experiment verified the characteristics of Janus nanoparticles in improving the oil-water mobility ratio. Compared with the water flooding stage, the recovery percent increased by 20.8%, of which 13.7% was attributed to the subsequent water flooding stage. Utilizing the asymmetry of the Janus particle structure can provide an effective path to enhanced oil recovery in inhomogeneous reservoirs.

2.
Anticancer Agents Med Chem ; 24(6): 464-476, 2024.
Article in English | MEDLINE | ID: mdl-38305391

ABSTRACT

BACKGROUND: Hyperoside is a flavonol glycoside isolated from Hypericum perforatum L. that has inhibitory effects on cancer cells; however, its effects on prostate cancer (PCa) remain unclear. Therefore, we studied the anti-PCa effects of hyperoside and its underlying mechanisms in vitro and in vivo. AIM: This study aimed to explore the mechanism of hyperoside in anti-PCa. METHODS: 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT), transwell, and flow cytometry assays were used to detect PCa cell growth, invasion, and cell apoptosis. Immunoblot analysis, immunofluorescence, immunoprecipitation, and quantitative real-time PCR (qRT-PCR) were used to analyze the antitumor mechanism of hyperoside. RESULTS: Hyperoside inhibited PCa cell growth, invasion, and cell cycle and induced cell apoptosis. Furthermore, RING finger protein 8 (RNF8), an E3 ligase that assembles K63 polyubiquitination chains, was predicted to be a direct target of hyperoside and was downregulated by hyperoside. Downregulation of RNF8 by hyperoside impeded the nuclear translocation of ß-catenin and disrupted the Wnt/ß-catenin pathway, which reduced the expression of the target genes c-myc, cyclin D1, and programmed death ligand 1 (PD-L1). Decreased PD-L1 levels contributed to induced immunity in Jurkat cells in vitro. Finally, in vivo studies demonstrated that hyperoside significantly reduced tumor size, inhibited PD-L1 and RNF8 expression, and induced apoptosis in tumor tissues of a subcutaneous mouse model. CONCLUSION: Hyperoside exerts its anti-PCa effect by reducing RNF8 protein, inhibiting nuclear translocation of ß-catenin, and disrupting the Wnt/ß-catenin pathway, in turn reducing the expression of PD-L1 and improving Jurkat cell immunity.


Subject(s)
Apoptosis , B7-H1 Antigen , Cell Proliferation , Prostatic Neoplasms , Quercetin , beta Catenin , Humans , Male , beta Catenin/metabolism , beta Catenin/antagonists & inhibitors , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Cell Proliferation/drug effects , Apoptosis/drug effects , Animals , Mice , Drug Screening Assays, Antitumor , Ubiquitin-Protein Ligases/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Tumor Cells, Cultured , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification
3.
RSC Adv ; 12(18): 11402-11412, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425085

ABSTRACT

The high temperature of formation and multiple stages of leakage zone seriously affect the efficiency and safety of drilling and cementing operations. To improve leakage plugging quality before the cementing process, the hydrophobic associating polymer PHAAO was synthesized from acrylamide (AM), 2-acrylamide-2-methyl propane sulfonic acid (AMPS), and the long side-chain hydrophobic monomer octadecyl dimethyl allyl ammonium chloride (ODAAC) in this study. The structure and molecular weight of the polymer were characterized, and it was proved that the polymer has strong association properties and excellent heat resistance. Utilizing the bridge plugging principle, the polymer PHAAO was used with 36-mesh walnut shells and lignin fiber to form a compound plugging agent. This agent was added to spacer fluid to become a plugging spacer. API water loss tests and loading capacity tests under high temperatures show that the filter cake formed by the spacer fluid is dense. The sealing pressure of the spacer fluid on a 1 mm crack can reach 6.5 MPa at 160 °C, and it has good compatibility with cement slurry. A scanning electron microscopy (SEM) test was conducted to explore the membrane formation mechanism of the polymer. An ultra-low permeability membrane is formed on the surface of the filter cake from the spacer fluid due to the hydrophobic association and hydrogen bonding between the polymer and lignin fiber, thereby greatly reducing the loss of spacer fluid.

4.
Sci Rep ; 7(1): 2316, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28539637

ABSTRACT

An abnormal neuronal activity in the amygdala is involved in the pathogenesis of anxiety disorders. However, little is known about the mechanisms. High-anxiety mice and low-anxiety mice, representing the innate extremes of anxiety-related behaviors, were first grouped according to their anxiety levels in the elevated plus maze test. We found that the mRNA for endothelin-1 (ET1) and ET1 B-type receptors (ETBRs) in the amygdala was down-regulated in high-anxiety mice compared with low-anxiety mice. Knocking down basolateral amygdala (BLA) ET1 expression enhanced anxiety-like behaviors, whereas over-expressing ETBRs, but not A-type receptors (ETARs), had an anxiolytic effect. The combined down-regulation of ETBR and ET1 had no additional anxiogenic effect compared to knocking down the ETBR gene alone, suggesting that BLA ET1 acts through ETBRs to regulate anxiety-like behaviors. To explore the mechanism underlying this phenomenon further, we verified that most of the ET1 and the ET1 receptors in the BLA were expressed in pyramidal neurons. The ET1-ETBR signaling pathway decreased the firing frequencies and threshold currents for the action potentials of BLA pyramidal neurons but did not alter BLA synaptic neurotransmission. Together, these results indicate that amygdalar ET1-ETBR signaling could attenuate anxiety-like behaviors by directly decreasing the excitability of glutamatergic neurons.


Subject(s)
Anxiety Disorders/genetics , Endothelin-1/genetics , Receptor, Endothelin B/genetics , Synaptic Transmission/genetics , Action Potentials , Animals , Anxiety Disorders/metabolism , Anxiety Disorders/physiopathology , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/pathology , Behavior, Animal/physiology , Gene Expression Regulation/genetics , Gene Knockdown Techniques , Humans , Maze Learning , Mice , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Signal Transduction
5.
Polymers (Basel) ; 9(5)2017 May 11.
Article in English | MEDLINE | ID: mdl-30970850

ABSTRACT

A 1,1-diphenylethylene (DPE) derivative with an alkoxysilyl group (DPE-SiOEt) was synthesized. It was end-capped with poly(styryl)lithium (PSLi) and then copolymerized with styrene via living anionic polymerization (LAP) in a non-polar solvent at room temperature. The observed side coupling reaction was carefully investigated by end-capping the polymer. Changes in molecular weight support the plausibility of a mechanism involving living anionic species (PSLi or lithiated DPE-end-capped polystyrene, PSDLi) and the alkoxysilyl groups. Through a series of copolymerizations with different feed ratios, the kinetics of the side coupling reaction were also studied. The results showed that the side reactions could be controlled using an excess feed of DPE-SiOEt, a potentially useful strategy for the synthesis and application of well-defined alkoxysilyl-functionalized polymers via LAP.

SELECTION OF CITATIONS
SEARCH DETAIL
...