Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202410112, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016184

ABSTRACT

Axially chiral biaryls are ubiquitous scaffolds in natural products, bioactive molecules, chiral ligands and catalysts, but biocatalytic methods for their asymmetric synthesis are limited. Here, we report a highly efficient biocatalytic route for the atroposelective synthesis of biaryls via dynamic kinetic resolution (DKR). This DKR approach features a transient six-membered aza-acetal bridge-promoted racemization followed by an imine-reductase (IRED)-catalyzed stereoselective reduction to construct the axial chirality at ambient conditions. Directed evolution of an IRED from Streptomyces sp. GF3546 provided a variant (S-IRED-Ss-M11) capable of catalyzing the DKR process to access a variety of biaryl aminoalcohols in high yields and excellent enantioselectivities (up to 98% yield and >99:1 enantiomeric ratio). Molecular dynamics simulation studies on the S-IRED-Ss-M11 variant revealed the origin of its improved activity and atroposelectivity. By exploiting the substrate promiscuity of IREDs and the power of directed evolution, our work further extends the biocatalysts' toolbox to construct challenging axially chiral molecules.

2.
Anal Chem ; 95(36): 13438-13445, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37649365

ABSTRACT

Generally, different isoforms of proteins exert separate biological functions. However, due to similar structures and identical catalysis functions, distinguishing isoforms is challenging. Summarizing a molecular design strategy has great significance in developing a protein-specific fluorescent probe. Usually, recognition of a group was deemed to be the key to a protein isoform-specific response. However, some novel literature reported that fluorophore could play a vital role in the protein isoform-specific response. It means that any part of the fluorescent probe could affect the detected properties. In this work, we report the generation of the first probe to specifically recognize HexA(ß-N-acetylhexosaminidase A), Hex-C4, by adjusting the length of the linker. Hex-C4 exhibits specific recognition of HexA both in vitro and in living cells. The integration of the fluorescent spectrum and the MD (molecular dynamics) results provide two factors for the molecular design of isoform-specific fluorescent probes. One is the interaction between tetraphenyl ethylene (AIE fluorogen) and amino acid residues, and the other is the interaction between amino acid residues and the binding group. In this work, a powerful tool to detect HexA in living cells is reported for the first time. Further, a workable molecular design strategy for protein isoform-specific fluorescent probes is summarized.


Subject(s)
Acetylglucosaminidase , Fluorescent Dyes , Protein Isoforms , Amino Acids , Catalysis
3.
Anal Chem ; 93(44): 14716-14721, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34702029

ABSTRACT

SQLE (squalene epoxidase) is a cell membrane-bound enzyme. It is a target of fungicides and may become a new target for cancer therapy. Therefore, monitoring the content and distribution of the key enzyme in living cells is very challenging. To achieve this goal, tetraphenyl ethylene-Ter (TPE-Ter) was first designed as a new fluorescent probe to SQLE based on its active cavity. Spectral experiments discovered that SQLE/TPE-Ter shows stronger emission with fast response time and low interference from other analytes. Molecular dynamics simulation clearly confirmed the complex structure of SQLE/TPE-Ter, and the key residues contribute to restriction of TPE-Ter single-molecular motion in the cavity. TPE-Ter-specific response to SQLE is successfully demonstrated in living cells such as LO2, HepG2, and fungi. Imaging of TPE-Ter-treated fungi indicates that it can be used to rapidly assess antifungal drug susceptibility (30 min at least). The present work provides a powerful tool to detect content and distribution of SQLE in living cells.


Subject(s)
Fluorescent Dyes , Squalene Monooxygenase , Antifungal Agents , Cell Line, Tumor
4.
Angew Chem Int Ed Engl ; 59(25): 10003-10007, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31965684

ABSTRACT

Enzymes contain several subunits to maintain different biological functions. However, it remains a great challenge for specific discrimination of one subunit over another. Toward this end, the fluorescent probe TPEMA is now presented for highly specific detection of the B subunit of cytosolic creatine (CK) kinase isoenzyme (CK-B). Owing to its aggregation-induced emission property, TPEMA shows highly boosted emission toward CK-B with a fast response time and very low interference from other analytes, including the M subunit of CK (CK-M). With the aid of a Job plot assay, ITC assay and molecular dynamics simulation, it was directly confirmed that the remarkably enhanced fluorescence of TPEMA in the presence of CK-B results from the restriction of single molecular motion in the cavity. Selective wash-free fluorescence imaging of CK-B in macrophages under different treatments was successfully demonstrated.


Subject(s)
Enzymes/ultrastructure , Fluorescent Dyes , Creatine Kinase/ultrastructure , Macrophages/enzymology , Macrophages/ultrastructure , Molecular Dynamics Simulation , Molecular Imaging , Motion , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...