Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Dalton Trans ; 51(9): 3502-3511, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35142313

ABSTRACT

Carbon dioxide (CO2) and the combustion of sulfide in gasoline are the main causes of air pollution. A great deal of attention has been paid to solving the problem and the catalytic reaction seems to be a decent choice. Due to the high-density of Lewis acidic active sites, polyoxometalates are undoubtedly an ideal choice for the sulfur oxidation reaction. With the reasons foregoing, two novel Zn-capped polyoxometalate-based organic-inorganic hybrids, {[α-PMoV2MoVI10O39(OH)Zn2][bbbm]3}·0.5C2H5OH (1) and TBA2{[ε-PMoV8MoVI4O37(OH)3Zn4][phim]3} (2) ((where bbbm = 1-(4-imidazol-1-ylbutyl) imidazole) and phim = 2-phenylimidazole) were successfully obtained by hydrothermal synthesis. In the two compounds, the N-donor ligands in a monodentate or bidentate coordination mode are directly connected to the Keggin anions by Zn-capped atoms, forming an extended one-dimensional chain. It is noteworthy that compound 2 ends up with an interesting spiral infinite chain possibly thanks to the TBA+ cations residing in gaps as structure-directing agents. Simultaneously, the catalytic properties indicate that compounds 1 and2 as efficient heterogeneous catalysts display a decent catalytic activity in the sulfur removal process. Especially, 2 enabled satisfying catalytic oxidation of dibenzothiophene (DBT) to produce more valuable dibenzothiophene sulfone (DBTO2) at 55 °C, and the conversion almost reached 99%. Besides, compound 2 also shows satisfactory catalytic effectiveness in the oxidation of various epoxides in the CO2 cycloaddition reaction, which suggests that compound 2 has the potential to function as a dual functional material with tremendous prospects in sulfur oxidation and carbon dioxide cycloaddition for the first time.

2.
Dalton Trans ; 50(39): 13925-13931, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34528636

ABSTRACT

Designing and synthesizing lanthanide clusters have always been a research hotspot. Herein, three lanthanide clusters with the formula [Ln8(IN)14(µ3-OH)8(µ2-OH)2(H2O)8]·xH2O (Ln = 1-Gd and x = 11; Ln = 2-Dy and x = 8; Ln = 3-Eu and x = 8) have been isolated in the presence of isonicotinic acid under solvothermal conditions. Structural analysis indicates that those three compounds are isostructural, featuring boat-shaped {Ln8} metal frameworks. Magnetic measurements reveal that 1-Gd exhibits a larger MCE with the maximum -ΔSm value of 31.77 J kg-1 K-1 at 2 K for ΔH = 7 T, while 2-Dy displays slow magnetization relaxation. Besides, the photoluminescence properties of 3-Eu were investigated.

3.
Dalton Trans ; 50(26): 9137-9143, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34115085

ABSTRACT

Two captivating {P4Mo6}-based compounds, formulated as (H2bbi)2{[Co2(bbi)][Co2.33(H2O)4][H9.33CoP8Mo12O62]}·4H2O (1) and (H2bbi){[Zn(Hbbi)]2[Zn0.75(bbi)][K2Zn(H2O)4][H8.5ZnP8Mo12O62]} (2) [bbi = 1,1'-(1,4-butanediyl)bis(imidazole)], were successfully synthesized under hydrothermal conditions. Structural analysis demonstrates that compounds 1 and 2 are constructed from hourglass-shaped structures [M(P4Mo6O31)2]n- (M = Co, Zn), which are all made up of molybdophosphates and one transition metal ion as the central connecting node. Compounds 1 and 2 feature three-dimensional (3D) frameworks, which are all connected to form a 3D structure by metal ions and bbi ligands. More interestingly, compound 1 exhibits higher catalytic activity than 2 in CO2 photoreduction due to the suitable energy band structure of Co species in {P4Mo6} clusters. The CO yield was 3261 µmol g-1 with high selectivity in 8 h for compound 1 in photocatalytic CO2 reduction, which is highly promising in the photocatalytic field. Additionally, the photoluminescence properties of 2 were investigated.

4.
Dalton Trans ; 49(40): 14251-14257, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33026381

ABSTRACT

Two new bifunctional isolated hybrid compounds, [ε-PMoV8MoVI4O37(OH)3Zn4][iql]4·6H2O (1) and [ε-PMoV8MoVI4O38(OH)2Zn4][bipy]3[(CH3COO)(bipy)2Zn]·2H2O (2) (where iql = isoquinoline and bipy = 2,2'-bipyridine), based on Zn-ε-Keggin were successfully synthesized by self-assembly under hydrothermal conditions. It is interesting to note that acetate in 2 acted as a linker connecting the ε-Keggin anion with the one Zn atom (Zn5) and enabled the ε-Keggin anion to coordinate with more bipy ligands, culminating with a larger isolated system, which is the first reported isolated cluster of Zn5PMo12. Meanwhile, compounds 1-2 show great electrochemical behaviors and excellent electrocatalytic activity for the degradation of NaNO2. In addition, compound 2 displays better third-order NLO performance than 1 due to the presence of more conjugated rings, with a TPA cross section (σ) of 1819 GM, which suggests that compound 2 has the potential to function as a bifunctional material with tremendous prospects.

5.
Huan Jing Ke Xue ; 35(2): 669-77, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24812963

ABSTRACT

To solve the problems of heavy metal pollution and agricultural wastes reclamation, spent substrate of pleurotus oyster was used as adsorbents to remove Cu2+ from aqueous solution. The effects of pH value, adsorption time, temperature and initial Cu2+ concentration on the adsorption behavior were determined by single factor experiments. The mechanisms were preliminarily investigated by SEM-EDX, FTIR and XRD analysis. The results of single factor experiments showed that the adsorption rate and capacity reached 74.46% and 0.7446 mg x g(-1) respectively at an adsorbent concentration of 10 g x L(-1), a pH of 6, an adsorption time of 120 min, an adsorption temperature of 30 degrees C and an initial Cu2+ concentration of 8 mg x L(-1). The experimental data fitted well with Langmuir isotherm models and R2 reached 0.994 9, indicating the adsorption was a monolayer chemisorption. SEM-EDX, FTIR and XRD analysis indicated that the adsorption process mainly depended on the physical and chemical adsorption onto the substrate surface through electrostatic attraction, complexation and coordination reaction. The -OH, -COOH and -NH were the functioning groups for Cu2+ adsorption.


Subject(s)
Copper/metabolism , Environmental Restoration and Remediation/methods , Pleurotus/metabolism , Adsorption , Animals , Environmental Pollutants/metabolism , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...