Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Res ; 28(1): 588, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38093375

ABSTRACT

Targeted therapy is pivotal in renal carcinoma treatment, and the dual-inhibitor NVP-BEZ235 has emerged as a promising candidate in preliminary studies. Its effectiveness against renal carcinoma and the mechanisms underlying potential resistance, however, warrant further exploration. This study aims to elucidate these aspects, enhancing our understanding of NVP-BEZ235's future clinical utility. To investigate resistance mechanisms, renal cancer cell lines were exposed to progressively increasing concentrations of NVP-BEZ235, leading to the development of stable resistance. These resistant cells underwent extensive RNA-sequencing analysis. We implemented gene interference techniques using plasmid vectors and lentivirus and conducted regular IC50 assessments. To pinpoint the role of LncRNAs, we utilized FISH and immunofluorescence staining assays, supplemented by RNA pull-down and RIP assays to delineate interactions between LncRNA and its RNA-binding protein (RBP). Further, Western blotting and qRT-PCR were employed to examine alterations in signaling pathways, with an animal model providing additional validation. Our results show a marked increase in the IC50 of NVP-BEZ235 in resistant cell lines compared to their parental counterparts. A significant revelation was the role of LncRNA-CHKB-AS1 in mediating drug resistance. We observed dysregulated expression of CHKB-AS1 in both clinical samples of clear cell renal cell carcinoma (ccRCC) and cell lines. In vivo experiments further substantiated our findings, showing that CHKB-AS1 overexpression significantly enhanced tumor growth and resistance to NVP-BEZ235 in a subcutaneous tumorigenesis model, as evidenced by increased tumor volume and weight, whereas CHKB-AS1 knockdown led to a marked reduction in these parameters. Critically, CHKB-AS1 was identified to interact with MAP4, a key regulator in the phosphorylation of the PI3k/Akt/mTOR pathway. This interaction contributes to a diminished antitumor effect of NVP-BEZ235, highlighting the intricate mechanism through which CHKB-AS1 modulates drug resistance pathways, potentially impacting therapeutic strategies against renal carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , RNA, Long Noncoding , Animals , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , TOR Serine-Threonine Kinases/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Cell Proliferation , Microtubule-Associated Proteins , Cell Line, Tumor
2.
Genet Res (Camb) ; 2023: 2355891, 2023.
Article in English | MEDLINE | ID: mdl-36741922

ABSTRACT

Chinese herbal medicine (CHM), which includes herbal slices and proprietary products, is widely used in China. Shenqi Dihuang (SQDH) is a traditional Chinese medicine (TCM) formula with ingredients that affect tumor growth. Despite recent advances in prognosis, patients with renal cell carcinoma (RCC) cannot currently receive curative treatment. The present study aimed to explore the potential target genes closely associated with SQDH. The gene expression data for SQDH and RCC were obtained from the TCMSP and TCGA databases. The SQDH-based prognostic prediction model reveals a strong correlation between RCC and SQDH. In addition, the immune cell infiltration analysis indicated that SQDH might be associated with the immune response of RCC patients. Based on this, we successfully built the prognostic prediction model using SQDH-related genes. The results demonstrated that CCND1 and NR3C2 are closely associated with the prognosis of RCC patients. Finally, the pathways enrichment analysis revealed that response to oxidative stress, cyclin binding, programmed cell death, and immune response are the most enriched pathways in CCND1. Furthermore, transcription regulator activity, regulation of cell population proliferation, and cyclin binding are closely associated with the NR3C2.


Subject(s)
Carcinoma, Renal Cell , Drugs, Chinese Herbal , Kidney Neoplasms , Humans , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Medicine, Chinese Traditional , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism
3.
ChemSusChem ; 13(6): 1637-1644, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31282613

ABSTRACT

The application of metal oxides and sulfides for lithium-ion batteries (LIBs) is hindered by the limited Li+ diffusion kinetics and inevitable structural damage. Pseudocapacitance for electrochemical lithium storage provides an effective and competitive solution for developing electrode materials with large capacity, high rate capability, and stability. Herein, a composite composed of VS4 nanoplates tightly bound to carbon nanotubes (VS4 /CNTs) is developed to demonstrate pseudocapacitance-assisted lithium storage. The texture of the assembled VS4 nanoplates supplies efficient electrolyte/ion diffusion, as well as exposed surface for pseudocapacitive behavior. The effective coupling between VS4 and CNTs ensures fast electron transfer and high stability. The VS4 /CNTs anode exhibits high capacity of 1144 mAh g-1 at 0.1 A g-1 , superior cycling stability (capacity retention of 100 % at 1 A g-1 after 400 cycles), and good rate capability. The pseudocapacitive behavior plays an important role in determining the excellent electrochemical properties, contributing to the increased charge rate and reaching as high as 42 % of the total charge at a scan rate of 1 mV s-1 . This study demonstrates the potential application of metal sulfides with pseudocapacitive contribution in LIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...