Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 606(Pt 2): 1249-1260, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34492463

ABSTRACT

In this study, an iron(III)-loaded magnetic chitosan/graphene oxide composite (Fe-MCG) was synthesized and applied for the adsorptive removal of sulfosalicylic acid (SSA) in aqueous solution. The results obtained from the application of various characterization techniques such as scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS) prove the successful formation of the composite with enhanced microstructure and superparamagnetic properties. The adsorption capacity of Fe-MCG towards SSA via batch mode reaches up to 135 mg/g at 293 K. The adsorption of SSA onto Fe-MCG is driven by monolayer adsorption with the chemical and physical adsorption processes both playing active roles. The Langmuir isotherm and pseudo-second-order kinetic models were observed to best describe the equilibrium adsorption and kinetic processes, respectively. The values obtained for the associated thermodynamic parameters confirm that the adsorptive process is spontaneous, exothermic and entropy-increasing. The efficacy and reusability of the spent Fe-MCG was studied using 0.01 mol/L NaOH solution. The kinetic process for the desorption of SSA from Fe-MCG is well described by the pseudo-second-order kinetic model. Based on the experimental results and XPS analysis, the underlying mechanisms for the uptake of SSA onto Fe-MCG involve electrostatic forces, complexation, π-π stacking, and hydrogen bonding. Overall, the excellent features of Fe-MCG enhance its potential as an adsorbent for the sequestration of SSA in environmental media.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Benzenesulfonates , Graphite , Hydrogen-Ion Concentration , Iron , Kinetics , Magnetic Phenomena , Salicylates , Thermodynamics
2.
Int J Biol Macromol ; 182: 1759-1768, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34048839

ABSTRACT

In this study, zirconium (IV)-impregnated magnetic chitosan graphene oxide (Zr-MCGO) was synthesized for removing fluoride from aqueous solution in batch mode. Characterization approaches (pHpzc, FTIR, SEM, XRD, VSM, Raman, BET, and XPS) proved the successful incorporation of Zr into the adsorbent. Zr-MCGO exhibited a relatively favorable and stable capacity of defluoridation at lower pH with a wide range of pH from 4.0 to 8.0, while there was slightly negative effect of ionic strength on adsorption. In addition, Elovich kinetic model and Koble-Corrigan isotherm model could describe the uptake of fluoride well. The adsorption capacity was 8.84 mg/g at 313 K and Zr-MCGO was easily separated from mixtures using external magnet. Based on the experiments and XPS, electrostatic force, ligand exchange, and Lewis acid-base interaction might be potential adsorption mechanisms. Pseudo-second-order model was more compatible with the desorption process by 0.01 mol/L NaHCO3 solution. Therefore, Zr-MCGO was a promising candidate for defluoridation on wastewater pollution remediation.


Subject(s)
Chitosan/chemistry , Fluorides/isolation & purification , Graphite/chemistry , Magnetic Phenomena , Water/chemistry , Zirconium/chemistry , Adsorption , Anions , Hydrogen-Ion Concentration , Kinetics , Models, Theoretical , Salinity , Solutions , Temperature , Time Factors
3.
Water Sci Technol ; 82(10): 2029-2038, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33263581

ABSTRACT

To enhance adsorption capacity of wheat straw (WS) toward copper ion from solution, carbon disulfide was used to modify WS by a facile grafting method through epichlorohydrin and ethylenediamine. So WS containing xanthate groups (XWS) was obtained. The XWS was characterized using elemental analysis, X-ray diffraction, infrared spectroscopy and adsorption property of XWS toward copper ions. The results showed that S was introduced into the surface of WS. The solution pH was in favor of Cu2+ adsorption at pH 5, while NaCl existing in solution was slightly favorable for adsorption. The adsorption kinetic followed the pseudo-second-order kinetic model, while the adsorption isotherm curve was well fitted using the Langmuir model. The adsorption capacity was 57.5 mg·g-1 from experiment. The process was entropy-produced, endothermic and spontaneous in nature. The column adsorption was performed and Yan model was good to predict the breakthrough curve. XWS as adsorbent is promising to remove copper ions from solution, and this offers one way of effective utilization of waste byproduct from agriculture.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Copper , Hydrogen-Ion Concentration , Ions , Kinetics , Solutions , Thermodynamics , Triticum , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...