Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theory Biosci ; 140(3): 279-294, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34494181

ABSTRACT

In the fight against the COVID-19 pandemic, many brilliant results have been achieved, but the thermodynamics of the novel SARS-CoV-2 coronavirus has been completely neglected. This is a serious systematic error, which can compromise the results of the entire pandemic virus SARS-CoV-2 research. In the present work, we therefore study the thermodynamics of SARS-CoV-2 in its environment, from air to endosome and endosome-independent cell entry pathways. In the study of the thermodynamics of the new coronavirus SARS-CoV-2 in air, the presence of pollen, bacteria, other viruses, spores, dust, but more particularly, that of nanoparticles of health interest at the same scale threshold as the spike proteins of the pandemic virus, such as particulate matter, cannot be neglected. This work therefore starts from a comparative study of the air environments in China and Italy, the first countries affected by the infection. Currently, a correlation between the spread of infection and pollution is still very controversial. But our paper is not concerned with this. We propose some methodological notes which lead us to the formulation of a general mathematical apparatus (an energy landscape theory), suitable to explain at the molecular level the energetic configurations of the quasi-species of the pandemic virus SARS-CoV-2 in its environment. We focus on complexes between the viral particle and other objects in its environment at the scale threshold of the spikes of the viral particle. Then, we wondered if such complexes can lead to the generation of more aggressive viral variants and how to predict their populations and energy configurations, in order to plan an adequate prophylaxis.


Subject(s)
Air Pollution , Biomedical Research/trends , COVID-19 , Pandemics , China , Humans , Italy , Particulate Matter , SARS-CoV-2
2.
Theor Biol Med Model ; 18(1): 1, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407639

ABSTRACT

BACKGROUND: Stochastic processes leading voltage-gated ion channel dynamics on the nerve cell membrane are a sufficient condition to describe membrane conductance through statistical mechanics of disordered and complex systems. RESULTS: Voltage-gated ion channels in the nerve cell membrane are described by the Ising model. Stochastic circuit elements called "Ising Neural Machines" are introduced. Action potentials are described as quasi-particles of a statistical field theory for the Ising system. CONCLUSIONS: The particle description of action potentials is a new point of view and a powerful tool to describe the generation and propagation of nerve impulses, especially when classical electrophysiological models break down. The particle description of action potentials allows us to develop a new generation of devices to study neurodegenerative and demyelinating diseases as Multiple Sclerosis and Alzheimer's disease, even integrated by connectomes. It is also suitable for the study of complex networks, quantum computing, artificial intelligence, machine and deep learning, cryptography, ultra-fast lines for entanglement experiments and many other applications of medical, physical and engineering interest.


Subject(s)
Artificial Intelligence , Models, Neurological , Action Potentials , Computing Methodologies , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...