Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3775, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38355849

ABSTRACT

According to a well-known principle of quantum physics, the statistics of the outcomes of any quantum experiment are governed by a Positive-Operator-Valued Measure (POVM). In particular, for experiments designed to measure a specific physical quantity, like the time of a particle's first arrival at a surface, this principle establishes that if the probability distribution of that quantity does not arise from a POVM, no such experiment exists. Such is the case with the arrival time distributions proposed by Das and Dürr, due to the nature of their spin dependence.

2.
Proc Math Phys Eng Sci ; 470(2162): 20130699, 2014 Feb 08.
Article in English | MEDLINE | ID: mdl-24511259

ABSTRACT

In relativistic space-time, Bohmian theories can be formulated by introducing a privileged foliation of space-time. The introduction of such a foliation-as extra absolute space-time structure-would seem to imply a clear violation of Lorentz invariance, and thus a conflict with fundamental relativity. Here, we consider the possibility that, instead of positing it as extra structure, the required foliation could be covariantly determined by the wave function. We argue that this allows for the formulation of Bohmian theories that seem to qualify as fundamentally Lorentz invariant. We conclude with some discussion of whether or not they might also qualify as fundamentally relativistic.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(1 Pt 1): 011109, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20365325

ABSTRACT

We consider an isolated macroscopic quantum system. Let H be a microcanonical "energy shell," i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E+deltaE . The thermal equilibrium macrostate at energy E corresponds to a subspace H(eq) of H such that dim H(eq)/dim H is close to 1. We say that a system with state vector psi is the element of H is in thermal equilibrium if psi is "close" to H(eq). We show that for "typical" Hamiltonians with given eigenvalues, all initial state vectors psi(0) evolve in such a way that psi(t) is in thermal equilibrium for most times t. This result is closely related to von Neumann's quantum ergodic theorem of 1929.

4.
Phys Rev Lett ; 96(5): 050403, 2006 Feb 10.
Article in English | MEDLINE | ID: mdl-16486907

ABSTRACT

It is well known that a system weakly coupled to a heat bath is described by the canonical ensemble when the composite S + B is described by the microcanonical ensemble corresponding to a suitable energy shell. This is true for both classical distributions on the phase space and quantum density matrices. Here we show that a much stronger statement holds for quantum systems. Even if the state of the composite corresponds to a single wave function rather than a mixture, the reduced density matrix of the system is canonical, for the overwhelming majority of wave functions in the subspace corresponding to the energy interval encompassed by the microcanonical ensemble. This clarifies, expands, and justifies remarks made by Schrödinger in 1952.

5.
Phys Rev Lett ; 93(9): 090402, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15447078

ABSTRACT

We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.

SELECTION OF CITATIONS
SEARCH DETAIL
...