Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34439308

ABSTRACT

Extra-pulmonary neuroendocrine carcinomas (EP-NECs) are lethal cancers with limited treatment options. Identification of contributing factors to the observed heterogeneity of clinical outcomes within the EP-NEC family is warranted, to enable identification of effective treatments. A multicentre retrospective study investigated potential differences in "real-world" treatment/survival outcomes between small-cell (SC) versus (vs.) non-SC EP-NECs. One-hundred and seventy patients were included: 77 (45.3%) had SC EP-NECs and 93 (54.7%) had non-SC EP-NECs. Compared to the SC subgroup, the non-SC subgroup had the following features: (1) a lower mean Ki-67 index (69.3% vs. 78.7%; p = 0.002); (2) a lower proportion of cases with a Ki-67 index of ≥55% (73.9% vs. 88.7%; p = 0.025); (3) reduced sensitivity to first-line platinum/etoposide (objective response rate: 31.6% vs. 55.1%, p = 0.015; and disease control rate; 59.7% vs. 79.6%, p = 0.027); (4) worse progression-free survival (PFS) (adjusted-HR = 1.615, p = 0.016) and overall survival (OS) (adjusted-HR = 1.640, p = 0.015) in the advanced setting. Within the advanced EP-NEC cohort, subgroups according to morphological subtype and Ki-67 index (<55% vs. ≥55%) had significantly different PFS (adjusted-p = 0.021) and OS (adjusted-p = 0.051), with the non-SC subgroup with a Ki-67 index of <55% and non-SC subgroup with a Ki-67 index of ≥55% showing the best and worst outcomes, respectively. To conclude, the morphological subtype of EP-NEC provides complementary information to the Ki-67 index and may aid identification of patients who could benefit from alternative first-line treatment strategies to platinum/etoposide.

2.
Eur J Cancer ; 135: 159-169, 2020 08.
Article in English | MEDLINE | ID: mdl-32580131

ABSTRACT

BACKGROUND: On February 23rd, the 1st case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was diagnosed at the University Hospital Trust of Verona, Italy. On March 13th, the Oncology Section was converted into a 22-inpatient bed coronavirus disease (COVID) Unit, and we reshaped our organisation to face the SARS-CoV-2 epidemic, while maintaining oncological activities. METHODS: We tracked down (i) volumes of oncological activities (January 1st - March 31st, 2020 versus the same period of 2019), (ii) patients' and caregivers' perception and (iii) SARS-CoV-2 infection rate in oncology health professionals and SARS-CoV-2 infection-related hospital admissions of "active"' oncological patients. RESULTS: As compared with the same trimester in 2019, the overall reduction in total numbers of inpatient admissions, chemotherapy administrations and specialist visits in January-March 2020 was 8%, 6% and 3%, respectively; based on the weekly average of daily accesses, reduction in some of the oncological activities became statistically significant from week 11. The overall acceptance of adopted measures, as measured by targeted questionnaires administered to a sample of 241 outpatients, was high (>70%). Overall, 8 of 85 oncology health professionals tested positive for SARS-CoV-2 infection (all but one employed in the COVID Unit, no hospital admissions and no treatment required); among 471 patients admitted for SARS-CoV-2 infection, 7 had an "active"' oncological disease (2 died of infection-related complications). CONCLUSIONS: A slight, but statistically significant reduction in oncology activity was registered during the SARS-CoV-2 epidemic peak in Verona, Italy. Organisational and protective measures adopted appear to have contributed to keep infections in both oncological patients and health professionals to a minimum.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/prevention & control , Infection Control/organization & administration , Medical Oncology/organization & administration , Neoplasms/therapy , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Health Knowledge, Attitudes, Practice , Health Personnel/psychology , Humans , Infection Control/standards , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Italy/epidemiology , Male , Mass Screening/standards , Medical Oncology/methods , Neoplasms/psychology , Patient Admission/standards , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Psychosocial Support Systems , Retrospective Studies , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...