Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroinformatics ; 21(2): 407-425, 2023 04.
Article in English | MEDLINE | ID: mdl-36445568

ABSTRACT

Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels-3D pixels-and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang's primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios.


Subject(s)
Neurosciences , Uncertainty , Brain/diagnostic imaging
2.
Sci Rep ; 12(1): 19431, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371447

ABSTRACT

Inferring reliable brain-behavior associations requires synthesizing evidence from thousands of functional neuroimaging studies through meta-analysis. However, existing meta-analysis tools are limited to investigating simple neuroscience concepts and expressing a restricted range of questions. Here, we expand the scope of neuroimaging meta-analysis by designing NeuroLang: a domain-specific language to express and test hypotheses using probabilistic first-order logic programming. By leveraging formalisms found at the crossroads of artificial intelligence and knowledge representation, NeuroLang provides the expressivity to address a larger repertoire of hypotheses in a meta-analysis, while seamlessly modeling the uncertainty inherent to neuroimaging data. We demonstrate the language's capabilities in conducting comprehensive neuroimaging meta-analysis through use-case examples that address questions of structure-function associations. Specifically, we infer the specific functional roles of three canonical brain networks, support the role of the visual word-form area in visuospatial attention, and investigate the heterogeneous organization of the frontoparietal control network.


Subject(s)
Artificial Intelligence , Functional Neuroimaging , Neuroimaging/methods , Brain/diagnostic imaging , Logic
3.
Elife ; 112022 09 28.
Article in English | MEDLINE | ID: mdl-36169404

ABSTRACT

The lateral prefrontal cortex (LPFC) of humans enables flexible goal-directed behavior. However, its functional organization remains actively debated after decades of research. Moreover, recent efforts aiming to map the LPFC through meta-analysis are limited, either in scope or in the inferred specificity of structure-function associations. These limitations are in part due to the limited expressiveness of commonly-used data analysis tools, which restricts the breadth and complexity of questions that can be expressed in a meta-analysis. Here, we adopt NeuroLang, a novel approach to more expressive meta-analysis based on probabilistic first-order logic programming, to infer the organizing principles of the LPFC from 14,371 neuroimaging studies. Our findings reveal a rostrocaudal and a dorsoventral gradient, respectively explaining the most and second most variance in meta-analytic connectivity across the LPFC. Moreover, we identify a unimodal-to-transmodal spectrum of coactivation patterns along with a concrete-to-abstract axis of structure-function associations extending from caudal to rostral regions of the LPFC. Finally, we infer inter-hemispheric asymmetries along the principal rostrocaudal gradient, identifying hemisphere-specific associations with topics of language, memory, response inhibition, and sensory processing. Overall, this study provides a comprehensive meta-analytic mapping of the LPFC, grounding future hypothesis generation on a quantitative overview of past findings.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Prefrontal Cortex/physiology
4.
J Neurosci ; 42(19): 4000-4015, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35410879

ABSTRACT

The development of mathematical skills in early childhood relies on number sense, the foundational ability to discriminate among quantities. Number sense in early childhood is predictive of academic and professional success, and deficits in number sense are thought to underlie lifelong impairments in mathematical abilities. Despite its importance, the brain circuit mechanisms that support number sense learning remain poorly understood. Here, we designed a theoretically motivated training program to determine brain circuit mechanisms underlying foundational number sense learning in female and male elementary school-age children (7-10 years). Our 4 week integrative number sense training program gradually strengthened the understanding of the relations between symbolic (Arabic numerals) and nonsymbolic (sets of items) representations of quantity. We found that our number sense training program improved symbolic quantity discrimination ability in children across a wide range of math abilities including children with learning difficulties. Crucially, the strength of pretraining functional connectivity between the hippocampus and intraparietal sulcus, brain regions implicated in associative learning and quantity discrimination, respectively, predicted individual differences in number sense learning across typically developing children and children with learning difficulties. Reverse meta-analysis of interregional coactivations across 14,371 fMRI studies and 89 cognitive functions confirmed a reliable role for hippocampal-intraparietal sulcus circuits in learning. Our study identifies a canonical hippocampal-parietal circuit for learning that plays a foundational role in children's cognitive skill acquisition. Findings provide important insights into neurobiological circuit markers of individual differences in children's learning and delineate a robust target for effective cognitive interventions.SIGNIFICANCE STATEMENT Mathematical skill development relies on number sense, the ability to discriminate among quantities. Here, we develop a theoretically motivated training program and investigate brain circuits that predict number sense learning in children during a period important for acquisition of foundational cognitive skills. Our integrated number sense training program was effective in children across a wide a range of math abilities, including children with learning difficulties. We identify hippocampal-parietal circuits that predict individual differences in learning gains. Our study identifies a brain circuit critical for the acquisition of foundational cognitive skills, which will be useful for developing effective interventions to remediate learning disabilities.


Subject(s)
Cognition , Problem Solving , Child , Child, Preschool , Female , Hippocampus , Humans , Male , Mathematics , Parietal Lobe
SELECTION OF CITATIONS
SEARCH DETAIL
...