Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Biochem Biophys Res Commun ; 622: 108-114, 2022 09 24.
Article in English | MEDLINE | ID: mdl-35843089

ABSTRACT

Apolipoprotein A-I (apoA-I), the main protein component of High-Density Lipoprotein (HDL), is modified in plasma and the arterial wall by various enzymes. Myeloperoxidase (MPO), a leukocyte-derived peroxidase, is highly expressed during inflammation and associates with HDL reducing its functionality and contributing to atherosclerosis. In the present study we sought to explore further the effect of MPO on HDL structure and functionality in vivo using adenovirus-mediated gene transfer of human MPO combined with human apoA-I forms containing substitutions at MPO-sensitive sites or wild type apoA-I. We found that overexpression of MPO in mice significantly increased plasma apoA-I and HDL levels without affecting the expression of genes involved in HDL biogenesis or catabolism in the liver. Overexpression of MPO in the liver reduced the expression of pro-inflammatory genes and increased or did not affect the expression of anti-inflammatory genes suggesting that MPO had no toxic effects in this organ. In the plasma of mice overexpressing MPO, no significant alterations in HDL size or electrophoretic mobility was observed with the exception of mice expressing apoA-I (M148A) which showed enriched pre-ß relative to α HDL particles, suggesting that the apoA-I (M148A) mutation may interfere with HDL remodelling. Overexpression of MPO was associated with reduced anti-oxidant capacity of HDL particles in all mice. Interestingly, HDL particles bearing apoA-I (Y192A) showed enhanced ABCA1-dependent cholesterol efflux from macrophages which was not affected by MPO and these mice had reduced levels of LDL-c. These findings provide new insights on the role of specific amino acid residues of apoA-I in HDL structure and function following modification by MPO. This knowledge may facilitate the development of novel therapies based on improved HDL forms for patients with chronic diseases that are characterized by dysfunctional HDL.


Subject(s)
Adenoviridae Infections , Apolipoprotein A-I , ATP Binding Cassette Transporter 1/genetics , ATP-Binding Cassette Transporters/metabolism , Adenoviridae/genetics , Adenoviridae/metabolism , Animals , Apolipoprotein A-I/metabolism , Humans , Lipoproteins, HDL , Mice , Peroxidase/genetics , Peroxidase/metabolism
2.
Metabolism ; 127: 154954, 2022 02.
Article in English | MEDLINE | ID: mdl-34875308

ABSTRACT

INTRODUCTION: Atherosclerotic Coronary Artery Disease (ASCAD) is the leading cause of mortality worldwide. Novel therapeutic approaches aiming to improve the atheroprotective functions of High Density Lipoprotein (HDL) include the use of reconstituted HDL forms containing human apolipoprotein A-I (rHDL-apoA-I). Given the strong atheroprotective properties of apolipoprotein E3 (apoE3), rHDL-apoE3 may represent an attractive yet largely unexplored therapeutic agent. OBJECTIVE: To evaluate the atheroprotective potential of rHDL-apoE3 starting with the unbiased assessment of global transcriptome effects and focusing on endothelial cell (EC) migration as a critical process in re-endothelialization and atherosclerosis prevention. The cellular, molecular and functional effects of rHDL-apoE3 on EC migration-associated pathways were assessed, as well as the potential translatability of these findings in vivo. METHODS: Human Aortic ECs (HAEC) were treated with rHDL-apoE3 and total RNA was analyzed by whole genome microarrays. Expression and phosphorylation changes of key EC migration-associated molecules were validated by qRT-PCR and Western blot analysis in primary HAEC, Human Coronary Artery ECs (HCAEC) and the human EA.hy926 EC line. The capacity of rHDL-apoE3 to stimulate EC migration was assessed by wound healing and transwell migration assays. The contribution of MEK1/2, PI3K and the transcription factor ID1 in rHDL-apoE3-induced EC migration and activation of EC migration-related effectors was assessed using specific inhibitors (PD98059: MEK1/2, LY294002: PI3K) and siRNA-mediated gene silencing, respectively. The capacity of rHDL-apoE3 to improve vascular permeability and hypercholesterolemia in vivo was tested in a mouse model of hypercholesterolemia (apoE KO mice) using Evans Blue assays and lipid/lipoprotein analysis in the serum, respectively. RESULTS: rHDL-apoE3 induced significant expression changes in 198 genes of HAEC mainly involved in re-endothelialization and atherosclerosis-associated functions. The most pronounced effect was observed for EC migration, with 42/198 genes being involved in the following EC migration-related pathways: 1) MEK/ERK, 2) PI3K/AKT/eNOS-MMP2/9, 3) RHO-GTPases, 4) integrin. rHDL-apoE3 induced changes in 24 representative transcripts of these pathways in HAEC, increasing the expression of their key proteins PIK3CG, EFNB2, ID1 and FLT1 in HCAEC and EA.hy926 cells. In addition, rHDL-apoE3 stimulated migration of HCAEC and EA.hy926 cells, and the migration was markedly attenuated in the presence of PD98059 or LY294002. rHDL-apoE3 also increased the phosphorylation of ERK1/2, AKT, eNOS and p38 MAPK in these cells, while PD98059 and LY294002 inhibited rHDL-apoE3-induced phosphorylation of ERK1/2, AKT and p38 MAPK, respectively. LY had no effect on rHDL-apoE3-mediated eNOS phosphorylation. ID1 siRNA markedly decreased EA.hy926 cell migration by inhibiting rHDL-apoE3-triggered ERK1/2 and AKT phosphorylation. Finally, administration of a single dose of rHDL-apoE3 in apoE KO mice markedly improved vascular permeability as demonstrated by the reduced concentration of Evans Blue dye in tissues such as the stomach, the tongue and the urinary bladder and ameliorated hypercholesterolemia. CONCLUSIONS: rHDL-apoE3 significantly enhanced EC migration in vitro, predominantly via overexpression of ID1 and subsequent activation of MEK1/2 and PI3K, and their downstream targets ERK1/2, AKT and p38 MAPK, respectively, and improved vascular permeability in vivo. These novel insights into the rHDL-apoE3 functions suggest a potential clinical use to promote re-endothelialization and retard development of atherosclerosis.


Subject(s)
Apolipoprotein E3/pharmacology , Endothelial Cells/drug effects , Lipoproteins, HDL/pharmacology , Animals , Apolipoprotein E3/metabolism , Cell Movement/drug effects , Cells, Cultured , Endothelial Cells/physiology , Humans , Inhibitor of Differentiation Protein 1/antagonists & inhibitors , Inhibitor of Differentiation Protein 1/drug effects , Inhibitor of Differentiation Protein 1/genetics , Lipoproteins, HDL/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Metabolism ; 87: 36-47, 2018 10.
Article in English | MEDLINE | ID: mdl-29928895

ABSTRACT

BACKGROUND: High Density Lipoprotein (HDL) and its main protein component, apolipoprotein A-I (apoA-I), have numerous atheroprotective functions on various tissues including the endothelium. Therapies based on reconstituted HDL containing apoA-I (rHDL-apoA-I) have been used successfully in patients with acute coronary syndrome, peripheral vascular disease or diabetes but very little is known about the genomic effects of rHDL-apoA-I and how they could contribute to atheroprotection. OBJECTIVE: The present study aimed to understand the endothelial signaling pathways and the genes that may contribute to rHDL-apoA-I-mediated atheroprotection. METHODS: Human aortic endothelial cells (HAECs) were treated with rHDL-apoA-I and their total RNA was analyzed with whole genome microarrays. Validation of microarray data was performed using multiplex RT-qPCR. The expression of ANGPTL4 in EA.hy926 endothelial cells was determined by RT-qPCR and Western blotting. The contribution of signaling kinases and transcription factors in ANGPTL4 gene regulation by HDL-apoA-I was assessed by RT-qPCR, Western blotting and immunofluorescence using chemical inhibitors or siRNA-mediated gene silencing. RESULTS: It was found that 410 transcripts were significantly changed in the presence of rHDL-apoA-I and that angiopoietin like 4 (ANGPTL4) was one of the most upregulated and biologically relevant molecules. In validation experiments rHDL-apoA-I, as well as natural HDL from human healthy donors or from transgenic mice overexpressing human apoA-I (TgHDL-apoA-I), increased ANGPTL4 mRNA and protein levels. ANGPTL4 gene induction by HDL was direct and was blocked in the presence of inhibitors for the AKT or the p38 MAP kinases. TgHDL-apoA-I caused phosphorylation of the transcription factor forkhead box O1 (FOXO1) and its translocation from the nucleus to the cytoplasm. Importantly, a FOXO1 inhibitor or a FOXO1-specific siRNA enhanced ANGPTL4 expression, whereas administration of TgHDL-apoA-I in the presence of the FOXO1 inhibitor or the FOXO1-specific siRNA did not induce further ANGPTL4 expression. These data suggest that FOXO1 functions as an inhibitor of ANGPTL4, while HDL-apoA-I blocks FOXO1 activity and induces ANGPTL4 through the activation of AKT. CONCLUSION: Our data provide novel insights into the global molecular effects of HDL-apoA-I on endothelial cells and identify ANGPTL4 as a putative mediator of the atheroprotective functions of HDL-apoA-I on the artery wall, with notable therapeutic potential.


Subject(s)
Angiopoietin-Like Protein 4/biosynthesis , Apolipoprotein A-I/pharmacology , Endothelial Cells/metabolism , Forkhead Box Protein O1/metabolism , Lipoproteins, HDL/pharmacology , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Angiopoietin-Like Protein 4/drug effects , Angiopoietin-Like Protein 4/genetics , Animals , Forkhead Box Protein O1/drug effects , Forkhead Box Protein O1/genetics , Gene Expression/drug effects , Gene Silencing , Healthy Volunteers , Humans , Mice , Mice, Transgenic , Microarray Analysis , Oncogene Protein v-akt/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Protein Transport/drug effects , RNA, Small Interfering/pharmacology
4.
Biochem J ; 475(10): 1839-1859, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29743204

ABSTRACT

The ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) initiates the production of amyloid-ß peptide (Aß), which is central to the pathogenesis of Alzheimer's disease (AD). Changes in brain cholesterol homeostasis have been suggested to affect Aß metabolism. Cholesterol homeostasis is maintained in the brain by apolipoprotein E (apoE). The apoE4 isoform constitutes the major risk factor for AD. Here, we investigated the effect of apoE forms on Aß generation and on BACE1 levels. We also examined the potential involvement in these processes of cholesterol transporters ABCG1 and ABCG4 or the lipoprotein receptor SR-BI, which are implicated in cholesterol efflux to apoE. It was found that reconstituted lipoprotein-associated apoE isoforms promoted the increase of Aß production and oligomerization and of BACE1 levels in human neuroblastoma SK-N-SH cells, with an apoE4 ≥ apoE3 > apoE2 potency rank order. Progressive carboxyl-terminal apoE4 deletions between residues 230-299 decreased the protein's ability to increase BACE1, while further truncations up to residue 166 prevented apoE4 from increasing BACE1 and Aß levels in SK-N-SH and primary mouse neuronal cells. ABCG1, but not ABCG4 or SR-BI, moderately increased Aß production and BACE1 levels in SK-N-SH cells. All apoE forms affected Aß production/oligomerization and BACE1 levels in a pattern that did not follow that of their capacity to promote ABCG1, ABCG4 or SR-BI-mediated cholesterol efflux. Overall, our data indicate that apoE-containing lipoprotein particles can have a direct effect on BACE1 levels and Aß secretion and possibly contribute to AD pathogenetic processes, independently of their capacity to promote cholesterol efflux.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/metabolism , Aspartic Acid Endopeptidases/metabolism , Cholesterol/metabolism , Neuroblastoma/metabolism , Neurons/metabolism , Animals , Apolipoprotein E4/genetics , Biological Transport , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Neuroblastoma/pathology , Neurons/cytology , Protein Isoforms , Sequence Deletion
5.
J Biomed Res ; 2017 Nov 04.
Article in English | MEDLINE | ID: mdl-29109329

ABSTRACT

In this review, we focus on the pathway of biogenesis of HDL, the essential role of apoA-I, ATP binding cassette transporter A1 (ABCA1), and lecithin: cholesterol acyltransferase (LCAT) in the formation of plasma HDL; the generation of aberrant forms of HDL containing mutant apoA-I forms and the role of apoA-IV and apoE in the formation of distinct HDL subpopulations. The biogenesis of HDL requires functional interactions of the ABCA1 with apoA-I (and to a lesser extent with apoE and apoA-IV) and subsequent interactions of the nascent HDL species thus formed with LCAT. Mutations in apoA-I, ABCA1 and LCAT either prevent or impair the formation of HDL and may also affect the functionality of the HDL species formed. Emphasis is placed on three categories of apoA-I mutations. The first category describes a unique bio-engineered apoA-I mutation that disrupts interactions between apoA-I and ABCA1 and generates aberrant preß HDL subpopulations that cannot be converted efficiently to α subpopulations by LCAT. The second category describes natural and bio-engineered apoA-I mutations that generate preß and small size α4 HDL subpopulations, and are associated with low plasma HDL levels. These phenotypes can be corrected by excess LCAT. The third category describes bio-engineered apoA-I mutations that induce hypertriglyceridemia that can be corrected by excess lipoprotein lipase and also have defective maturation of HDL. The HDL phenotypes described here may serve in the future for diagnosis, prognoses and potential treatment of abnormalities that affect the biogenesis and functionality of HDL.

6.
Lipids ; 52(12): 991-998, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29094255

ABSTRACT

Lipid core nanoparticles (LDE) resembling LDL behave similarly to native LDL when injected in animals or subjects. In contact with plasma, LDE acquires apolipoproteins (apo) E, A-I and C and bind to LDL receptors. LDE can be used to explore LDL metabolism or as a vehicle of drugs directed against tumoral or atherosclerotic sites. The aim was to investigate in knockout (KO) and transgenic mice the plasma clearance and tissue uptake of LDE labeled with 3H-cholesteryl ether. LDE clearance was lower in LDLR KO and apoE KO mice than in wild type (WT) mice (p < 0.05). However, infusion of human apoE3 into the apoE KO mice increased LDE clearance. LDE clearance was higher in apoA-I KO than in WT. In apoA-I transgenic mice, LDE clearance was lower than in apoA-I KO and than in apoA-I KO infusion with human HDL. Infusion of human HDL into the apoA-I KO mice resulted in higher LDE clearance than in the apoA-I transgenic mice (p < 0.05). In apoA-I KO and apoA-I KO infused human HDL, the liver uptake was greater than in WT animals and apoA-I transgenic animals (p < 0.05). LDE clearance was lower in apoE/A-I KO than in WT. Infusion of human HDL increased LDE clearance in those double KO mice. No difference among the groups in LDE uptake by the tissues occurred. In conclusion, results support LDLR and apoE as the key players for LDE clearance, apoA-I also influences those processes.


Subject(s)
Apolipoproteins E/genetics , Lipids/blood , Receptors, LDL/genetics , Animals , Cell Line , Humans , Lipoproteins, HDL/administration & dosage , Mice , Mice, Knockout , Mice, Transgenic
7.
Biochemistry ; 54(46): 6931-41, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26506427

ABSTRACT

Macrophage ABCA1 effluxes lipid and has anti-inflammatory activity. The syntrophins, which are cytoplasmic PDZ protein scaffolding factors, can bind ABCA1 and modulate its activity. However, many of the data assessing the function of the ABCA1-syntrophin interaction are based on overexpression in nonmacrophage cells. To assess endogenous complex function in macrophages, we derived immortalized macrophages from Abca1(+/+) and Abca1(-/-) mice and show their phenotype recapitulates primary macrophages. Abca1(+/+) lines express the CD11B and F4/80 macrophage markers and markedly upregulate cholesterol efflux in response to LXR nuclear hormone agonists. In contrast, immortalized Abca1(-/-) macrophages show no efflux to apoA-I. In response to LPS, Abca1(-/-) macrophages display pro-inflammatory changes, including an increased level of expression of cell surface CD14, and 11-26-fold higher levels of IL-6 and IL-12 mRNA. Given recapitulation of phenotype, we show with these lines that the ABCA1-syntrophin protein complex is upregulated by LXR agonists and can bind apoA-I. Moreover, in immortalized macrophages, combined α1/ß2-syntrophin loss modulated ABCA1 cell surface levels and induced pro-inflammatory gene expression. However, loss of all three syntrophin isoforms known to bind ABCA1 did not impair lipid efflux in immortalized or primary macrophages. Thus, the ABCA1-syntrophin protein complex is not essential for ABCA1 macrophage lipid efflux but does directly interact with apoA-I and can modulate the pool of cell surface ABCA1 stabilized by apoA-I.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein A-I/metabolism , Dystrophin-Associated Proteins/metabolism , Macrophages/metabolism , Orphan Nuclear Receptors/agonists , ATP Binding Cassette Transporter 1/deficiency , ATP Binding Cassette Transporter 1/genetics , Animals , Biological Transport, Active , Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Line , Dystrophin-Associated Proteins/deficiency , Dystrophin-Associated Proteins/genetics , Hydrocarbons, Fluorinated/pharmacology , Lipid Metabolism , Liver X Receptors , Macrophages/drug effects , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscle Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sulfonamides/pharmacology , Up-Regulation
8.
Atherosclerosis ; 243(1): 77-85, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26363436

ABSTRACT

OBJECTIVE: Mutations in human apolipoprotein A-I (apoA-I) are associated with low high-density lipoprotein (HDL) cholesterol levels and pathological conditions such as premature atherosclerosis and amyloidosis. In this study we functionally characterized two natural human apoA-I mutations, L141RPisa and L159RFIN, in vivo. METHODS: We generated transgenic mice expressing either wild-type (WT) or the two mutant forms of human apoA-I on a mouse apoA-I(-/-) background and analyzed for abnormalities in their lipid and lipoprotein profiles. HDL structure and functionality, as well as atherosclerosis development following a 14-week high-fat diet were assessed in these mice. RESULTS: The expression of either apoA-I mutant was associated with markedly reduced serum apoA-I (<10% of WT apoA-I), total and HDL-cholesterol levels (∼20% and ∼7% of WT apoA-I, respectively) and the formation of few small size HDL particles with preß2 and α3, α4 electrophoretic mobility. HDL particles containing either of the two apoA-I mutants exhibited attenuated anti-oxidative properties as indicated by their inability to prevent low-density lipoprotein oxidation, and by decreased activities of paraoxonase-1 and platelet-activating factor acetylhydrolase. However, the apoA-I(L141R)Pisa or apoA-I(L159R)FIN-containing HDL particles demonstrated increased capacity to promote ATP-Binding Cassette Transporter A1-mediated cholesterol efflux from macrophages. Expression of apoA-I(L141R)Pisa or apoA-I(L159R)FIN mutations in mice was associated with increased diet-induced atherosclerosis compared to either WT apoA-I transgenic or apoA-I(-/-) mice. CONCLUSIONS: These findings suggest that natural apoA-I mutations L141RPisa and L159RFIN affect the biogenesis and the functionality of HDL in vivo and predispose to diet-induced atherosclerosis in the absence of any other genetic defect.


Subject(s)
Apolipoprotein A-I/genetics , Atherosclerosis/blood , Lipoproteins, HDL/blood , Lipoproteins, LDL/genetics , Mutation , ATP Binding Cassette Transporter 1/metabolism , Animal Feed , Animals , Antioxidants/chemistry , Aryldialkylphosphatase/metabolism , Electrophoresis, Gel, Two-Dimensional , Humans , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Platelet Activating Factor/metabolism
9.
Biochemistry ; 54(38): 5856-66, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26337529

ABSTRACT

Phospholipid transfer protein (PLTP), a main protein in lipid and lipoprotein metabolism, exists in high-activity (HA-PLTP) and low-activity (LA-PLTP) forms in human plasma. Proper phospholipid transfer activity of PLTP is modulated by interactions with various apolipoproteins (apo) including apoE. The domains of apoE involved in interactions with PLTP are not known. Here we analyzed the capacity of recombinant apoE isoforms and apoE4 mutants with progressive carboxyl-terminal deletions to bind to and activate HA-PLTP and LA-PLTP. Our analyses demonstrated that lipid-free apoE isoforms bind to both HA-PLTP and LA-PLTP, resulting in phospholipid transfer activation, with apoE3 inducing the highest PLTP activation. The isoform-specific differences in apoE/PLTP binding and PLTP activation were abolished following apoE lipidation. Lipid-free apoE4[Δ(260-299)], apoE4[Δ(230-299)], apoE4[Δ(203-299)], and apoE4[Δ(186-299)] activated HA-PLTP by 120-160% compared to full-length apoE4. Lipid-free apoE4[Δ(186-299)] also activated LA-PLTP by 85% compared to full-length apoE4. All lipidated truncated apoE4 forms displayed a similar effect on HA-PLTP and LA-PLTP activity as full-length apoE4. Strikingly, lipid-free or lipidated full-length apoE4 and apoE4[Δ(186-299)] demonstrated similar binding capacity to LA-PLTP and HA-PLTP. Biophysical studies showed that the carboxyl-terminal truncations of apoE4 resulted in small changes of the structural or thermodynamic properties of lipidated apoE4, that were much less pronounced compared to changes observed previously for lipid-free apoE4. Overall, our findings show an isoform-dependent binding to and activation of PLTP by lipid-free apoE. Furthermore, the domain of apoE4 required for PLTP activation resides within its amino-terminal 1-185 region. The apoE/PLTP interactions can be modulated by the conformation and lipidation state of apoE.


Subject(s)
Apolipoprotein E4/metabolism , Phospholipid Transfer Proteins/metabolism , Apolipoprotein E4/chemistry , Apolipoprotein E4/genetics , Apolipoproteins E/chemistry , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Cell Line , Humans , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion
10.
Biochemistry ; 54(21): 3348-59, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25948084

ABSTRACT

We have investigated how the natural LCAT[T147I] and LCAT[P274S] mutations affect the pathway of biogenesis of HDL. Gene transfer of WT LCAT in LCAT(-/-) mice increased 11.8-fold the plasma cholesterol, whereas the LCAT[T147I] and LCAT[P274S] mutants caused a 5.2- and 2.9-fold increase, respectively. The LCAT[P274S] and the WT LCAT caused a monophasic distribution of cholesterol in the HDL region, whereas the LCAT[T147I] caused a biphasic distribution of cholesterol in the LDL and HDL region. Fractionation of plasma showed that the expression of WT LCAT increased plasma apoE and apoA-IV levels and shifted the distribution of apoA-I to lower densities. The LCAT[T147I] and LCAT[P274S] mutants restored partially apoA-I in the HDL3 fraction and LCAT[T147I] increased apoE in the VLD/IDL/LDL fractions. The in vivo functionality of LCAT was further assessed based on is its ability to correct the aberrant HDL phenotype that was caused by the apoA-I[L159R]FIN mutation. Co-infection of apoA-I(-/-) mice with this apoA-I mutant and either of the two mutant LCAT forms restored only partially the HDL biogenesis defect that was caused by the apoA-I[L159R]FIN and generated a distinct aberrant HDL phenotype.


Subject(s)
Cholesterol/metabolism , Lipoproteins, HDL/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Point Mutation , Animals , Apolipoprotein A-I/blood , Apolipoprotein A-I/metabolism , Apolipoproteins A/blood , Apolipoproteins A/metabolism , Apolipoproteins E/blood , Apolipoproteins E/metabolism , Cell Line , Cholesterol/blood , Humans , Lipids/blood , Lipoproteins, HDL/blood , Mice , Mice, Inbred C57BL , Mice, Knockout
11.
J Immunol ; 194(10): 4676-87, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25870241

ABSTRACT

Aberrant levels and function of the potent anti-inflammatory high-density lipoprotein (HDL) and accelerated atherosclerosis have been reported in patients with autoimmune inflammatory diseases. Whether HDL affects the development of an autoimmune response remains elusive. In this study, we used apolipoprotein A-I-deficient (apoA-I(-/-)) mice, characterized by diminished circulating HDL levels, to delineate the role of HDL in autoimmunity. ApoA-I(-/-) mice exhibited increased severity of Ag-induced arthritis compared with wild-type mice, and this was associated with elevated Th1 and Th17 cell reactivity in the draining lymph nodes. Furthermore, reconstituted HDL (rHDL) attenuated IFN-γ and IL-17 secretion by Ag-specific T cells upon stimulation of draining lymph nodes in vitro. The suppressive effects of rHDL were mediated through modulation of dendritic cell (DC) function. Specifically, rHDL-treated DCs demonstrated an immature phenotype characterized by downregulated costimulatory molecules, the release of low amounts of proinflammatory cytokines, and failure to promote T cell proliferation in vitro. The mechanism of action involved the inhibition of NF-κB nuclear translocation and the decrease of Myd88 mRNA levels by rHDL. Finally, modulation of DC function by rHDL was critically dependent on the presence of scavenger receptor class B type I and ATP Binding Cassette Transporter A1, but not the ATP Binding Cassette Transporter G1. These findings reveal a novel role of HDL in the regulation of adaptive inflammatory responses through suppression of DC function that could be exploited therapeutically in autoimmune inflammatory diseases.


Subject(s)
Autoimmunity/immunology , Dendritic Cells/immunology , Lipoproteins, HDL/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Animals , Arthritis, Experimental/immunology , Blotting, Western , Cell Differentiation/immunology , Coculture Techniques , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , T-Lymphocytes/immunology
12.
Handb Exp Pharmacol ; 224: 53-111, 2015.
Article in English | MEDLINE | ID: mdl-25522986

ABSTRACT

In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.


Subject(s)
Lipoproteins, HDL/metabolism , Animals , Biomarkers/metabolism , Humans , Lipid Metabolism , Lipoproteins, HDL/biosynthesis , Lipoproteins, HDL/blood , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/classification , Protein Conformation , Structure-Activity Relationship
13.
Handb Exp Pharmacol ; 224: 113-79, 2015.
Article in English | MEDLINE | ID: mdl-25522987

ABSTRACT

HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.


Subject(s)
Lipoproteins, HDL/genetics , Lipoproteins, HDL/metabolism , Protein Processing, Post-Translational , RNA Processing, Post-Transcriptional , Transcription, Genetic , Animals , Gene Expression Regulation , Humans , Lipid Metabolism/genetics , Lipoproteins, HDL/blood
14.
J Lipid Res ; 55(7): 1310-23, 2014 07.
Article in English | MEDLINE | ID: mdl-24776540

ABSTRACT

The K146N/R147W substitutions in apoE3 were described in patients with a dominant form of type III hyperlipoproteinemia. The effects of these mutations on the in vivo functions of apoE were studied by adenovirus-mediated gene transfer in different mouse models. Expression of the apoE3[K146N/R147W] mutant in apoE-deficient (apoE(-/-)) or apoA-I-deficient (apoA-I(-/-))×apoE(-/-) mice exacerbated the hypercholesterolemia and increased plasma apoE and triglyceride levels. In apoE(-/-) mice, the apoE3[K146N/R147W] mutant displaced apoA-I from the VLDL/LDL/HDL region and caused the accumulation of discoidal apoE-containing HDL. The WT apoE3 cleared the cholesterol of apoE(-/-) mice without induction of hypertriglyceridemia and promoted formation of spherical HDL. A unique property of the truncated apoE3[K146N/R147W]202 mutant, compared with similarly truncated apoE forms, is that it did not correct the hypercholesterolemia. The contribution of LPL and LCAT in the induction of the dyslipidemia was studied. Treatment of apoE(-/-) mice with apoE3[K146N/R147W] and LPL corrected the hypertriglyceridemia, but did not prevent the formation of discoidal HDL. Treatment with LCAT corrected hypertriglyceridemia and generated spherical HDL. The combined data indicate that the K146N/R147W substitutions convert the full-length and the truncated apoE3[K146N/R147W] mutant into a dominant negative ligand that prevents receptor-mediated remnant clearance, exacerbates the dyslipidemia, and inhibits the biogenesis of HDL.


Subject(s)
Apolipoprotein E3/metabolism , Lipoproteins, HDL/biosynthesis , Mutation, Missense , Amino Acid Substitution , Animals , Apolipoprotein E3/genetics , Female , Hypertriglyceridemia/genetics , Hypertriglyceridemia/metabolism , Hypertriglyceridemia/pathology , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Lipoproteins, HDL/genetics , Male , Mice , Mice, Knockout , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism
15.
J Lipid Res ; 54(12): 3293-302, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24123812

ABSTRACT

We studied the significance of four hydrophobic residues within the 225-230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I⁻/⁻ mice decreased plasma cholesterol, HDL cholesterol, and apoA-I levels. When expressed in apoA-I⁻/⁻ × apoE⁻/⁻ mice, approximately 40% of the mutant apoA-I as well as mouse apoA-IV and apoB-48 appeared in the VLDL/IDL/LDL. In both mouse models, the apoA-I mutant generated small spherical particles of pre-ß- and α4-HDL mobility. Coexpression of the apoA-I mutant and LCAT increased and shifted the-HDL cholesterol peak toward lower densities, created normal αHDL subpopulations, and generated spherical-HDL particles. Biophysical analyses suggested that the apoA-I[225-230] mutations led to a more compact folding that may limit the conformational flexibility of the protein. The mutations also reduced the ability of apoA-I to promote ABCA1-mediated cholesterol efflux and to activate LCAT to 31% and 66%, respectively, of the WT control. Overall, the apoA-I[225-230] mutations inhibited the biogenesis of-HDL and led to the accumulation of immature pre-ß- and α4-HDL particles, a phenotype that could be corrected by administration of LCAT.


Subject(s)
Apolipoprotein A-I/chemistry , Apolipoprotein A-I/metabolism , Hydrophobic and Hydrophilic Interactions , Lipoproteins, HDL/biosynthesis , Adenoviridae/genetics , Animals , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Chemical Phenomena , HEK293 Cells , Humans , Mice , Mutation
16.
J Lipid Res ; 54(12): 3281-92, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23990662

ABSTRACT

We investigated the significance of hydrophobic and charged residues 218-226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I⁻/⁻ mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-ß- and α4-HDL particles. In apoA-I⁻/⁻ × apoE⁻/⁻ mice, the same mutant formed few discoidal and pre-ß-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I⁻/⁻ mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218-222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218-222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-ß particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.


Subject(s)
Apolipoprotein A-I/chemistry , Apolipoprotein A-I/metabolism , Hydrophobic and Hydrophilic Interactions , Lipoproteins, HDL/biosynthesis , Adenoviridae/genetics , Animals , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Cell Line , Humans , Lipoproteins, HDL/blood , Mice , Mutation , Protein Structure, Secondary , Protein Unfolding , Temperature , Transgenes/genetics
17.
PLoS One ; 8(6): e67993, 2013.
Article in English | MEDLINE | ID: mdl-23826352

ABSTRACT

ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69-99% of control by double deletion mutants apoA-I[Δ(1-41)Δ(185-243)] and apoA-I[Δ(1-59)Δ(185-243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Cholesterol, HDL/metabolism , Mutation , Animals , Apolipoprotein A-I/isolation & purification , Cell Membrane/metabolism , HEK293 Cells , Humans , Ketocholesterols/metabolism , Mice , Protein Domains , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Structure-Activity Relationship
18.
Atherosclerosis ; 226(2): 385-91, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23228878

ABSTRACT

Overexpression of ApoE4[Leu261Ala/Trp264Ala/Phe265Ala] mutant (ApoE4mutC) prevents hypertriglyceridemia and promotes formation of spherical ApoE-containing HDL in ApoE(-/-) or ApoA-I(-/-) mice. Although, a similar phenotype was observed with ApoE2[Leu261Ala/Trp264Ala/Phe265Ala] (ApoE2mutC), small differences in cholesterol distribution to IDL/LDL, HDL2 and HDL3 fractions and ApoE distribution to HDL2 and HDL3 fractions suggested that ApoE allelic background can influence mutant ApoE properties. To understand the structural basis behind the properties of ApoE2mutC and ApoE4mutC variants we analyzed their structural and thermodynamic integrity in comparison to their wild-type counterparts. Circular dichroism spectroscopy revealed a significantly reduced helical content for both mutants compared to wild-type. The presence of mutation only marginally affected the thermal stability of ApoE4 but greatly affected the thermal stability profile of ApoE2 leading to a previously uncharacterized intermediate stage. Both ApoE4mutC and ApoE2mutC were slightly stabilized against chemical denaturation compared to their wild-type counterparts. ApoE2mutC, in contrast to ApoE4mutC, exposed a larger hydrophobic surface to the solvent as determined by a fluorescent probe. Both mutants remodeled 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles with identical kinetics to the wild-type proteins. Given the known conformational differences between ApoE2 and ApoE4, our findings suggest that the 261-265 region may be involved in inter-domain interactions within the ApoE molecule. Overall, we show that substitution of Leu261, Trp264 and Phe265 with Ala in ApoE2 leads to more pronounced perturbations of thermodynamic stability and structure than in ApoE4. The minimal perturbations in ApoE4mutC may make it a more suitable candidate for therapeutic applications for the correction of remnant removal disorders and atheroprotection.


Subject(s)
Apolipoproteins E/chemistry , Apolipoproteins E/genetics , Alleles , Amino Acid Sequence , Amino Acid Substitution , Animals , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/biosynthesis , Circular Dichroism , Lipoproteins, HDL/biosynthesis , Lipoproteins, HDL/chemistry , Mice , Protein Stability , Thermodynamics
19.
J Lipid Res ; 54(1): 107-15, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23132909

ABSTRACT

The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I(-/-) mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-ß-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I(-/-) × apoE(-/-) mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-ß-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1(-/-) or LCAT(-/-) mice. Coexpression of apoA-IV and LCAT in apoA-I(-/-) mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Apolipoproteins A/metabolism , Lipoproteins, HDL/biosynthesis , Lipoproteins, HDL/chemistry , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , ATP Binding Cassette Transporter 1 , Animals , HEK293 Cells , Humans , Mice
20.
Biochem Pharmacol ; 84(11): 1451-8, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22985620

ABSTRACT

Physiological levels of wild-type (wt) apolipoprotein E (apoE) in plasma mediate the clearance of cholesterol-rich atherogenic lipoprotein remnants while higher than normal plasma apoE concentrations fail to do so and trigger hypertriglyceridemia. This property of wt apoE reduces significantly its therapeutic value as a lead biological for the treatment of dyslipidemia. Recently, we reported the generation of a recombinant apoE variant, apoE4 [L261A, W264A, F265A, L268A, V269A] (apoE4mut1) with improved biological functions. Specifically, in apoE-deficient (apoE(-/-)) mice this variant can normalize high plasma cholesterol levels without triggering hypertriglyceridemia, even at supraphysiological levels of expression. In the present study we performed pharmacodynamic and pharmacokinetic analysis of apoE4mut1 in experimental mice. Using adenovirus-mediated gene transfer in LDL receptor deficient (LDLr(-/-)) mice, we show that the cholesterol lowering potential of apoE4mut1 is dependent on the expression of a functional classical LDLr. Bolus infusion of apoE4mut1-containing proteoliposomes in apoE(-/-) mice fed western-type diet for 6 weeks indicated that exogenously synthesized apoE4mut1 maintains intact its ability to normalize the high cholesterol levels of these mice with a maximum pharmacological effect obtained at 10h post-treatment. Interestingly, plasma cholesterol levels remained significantly reduced up to 24h following intravenous administration of apoE4mut1 proteoliposomes. Measurements of plasma apoE levels indicated that apoE4mut1 in the form of proteoliposomes used in the study has a half-life of 15.8h. Our data suggest that purified apoE4mut1 may be an attractive new candidate for the acute correction of hypercholesterolemia in subjects expressing functional LDL receptor.


Subject(s)
Apolipoprotein E4/pharmacology , Animals , Apolipoprotein E4/pharmacokinetics , Apolipoprotein E4/therapeutic use , Base Sequence , Cells, Cultured , DNA Primers , Disease Models, Animal , Hypercholesterolemia/drug therapy , Mice , Mice, Knockout , Microscopy, Electron , Real-Time Polymerase Chain Reaction , Receptors, LDL/genetics , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...