Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 138(1): 29-39, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-16879912

ABSTRACT

The aerobic cometabolic biodegradation of a mixture of chlorinated aliphatic hydrocarbons (CAHs) including vinyl chloride (VC), cis- and trans-1,2-dichloroethylene (cis-DCE, trans-DCE), trichloroethylene (TCE), 1,1,2-trichloroethane (1,1,2-TCA) and 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) was investigated at both 25 and 17 degrees C by means of bioaugmented and non-bioaugmented sediment-groundwater slurry microcosm tests. The goals of the study were (i) to study the long-term aerobic biodegradation of a CAH mixture including a high-chlorinated solvent (1,1,2,2-TeCA) generally considered non-biodegradable in aerobic conditions; (ii) to investigate the efficacy of bioaugmentation with two types of internal inocula obtained from the indigenous biomass of the studied site; (iii) to identify the CAH-degrading bacteria. VC, methane and propane were utilized as growth substrates. The non-bioaugmented microcosms were characterized, at 25 degrees C, by an average 18-day lag-time for the direct metabolism of VC (accompanied by the cometabolism of cis- and trans-DCE) and by long lag-times (36-264 days) for the onset of methane or propane utilization (associated with the cometabolism of the remaining CAHs). In the inoculated microcosms the lag-phases for the onset of growth substrate utilization and CAH cometabolism were significantly shorter (0-15 days at 25 degrees C). Biodegradation of the 6-CAH mixture was successfully continued for up to 410 days. The low-chlorinated solvents were characterized by higher depletion rates. The composition of the microbial consortium of a propane-utilizing microcosm was determined by 16s rDNA sequencing and phylotype analysis. To the best of our knowledge, this is the first study that documents the long-term aerobic biodegradation of 1,1,2,2-TeCA.


Subject(s)
Hydrocarbons, Chlorinated/metabolism , Methane/pharmacology , Propane/pharmacology , Soil Pollutants/metabolism , Solvents/metabolism , Vinyl Chloride/pharmacology , Water Pollutants, Chemical/metabolism , Aerobiosis , Biodegradation, Environmental , Biomass , Colony Count, Microbial/methods , Hydrocarbons, Chlorinated/chemistry , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Soil Pollutants/chemistry , Solvents/chemistry , Temperature , Time Factors
2.
Biodegradation ; 16(2): 147-58, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15730025

ABSTRACT

The focus of this microcosm study was to monitor the performances of 17 butane-utilizing microcosms during a long-term (100-250 days) aerobic cometabolic depletion of chloroform (CF). The depletion of the contaminant began after a lag-time variable between 0 and 23 days. All microcosms quickly reached a pseudo steady-state condition, in terms of biomass concentration (with an average of 9.3 x 106 CFU ml(-1)), chloroform depletion rate (5 micromol l(-1) d(-1)) and butane utilization rate (730 micromol l(-1) d(-1)). After about 100 days of CF depletion, a sudden 5- to 7-fold increase of the chloroform rate was observed in two microcosms, where the highest amount of contaminant had been depleted. In one of these high-performing microcosms, an experiment of chloroform depletion in the absence of butane resulted in the depletion of a surprisingly high amount of contaminant (765 micromolCF kg(-1) dry soil in 2 months) and in a marked selection of a single bacterial strain. Bioaugmentation assays conducted with the biomass selected in this microcosm and with a pure culture of the selected strain immediately resulted in very high chloroform depletion rates. Preliminary results of a study conducted with resting cells of the selected strain indicated that it can degrade chloroform concentrations up to 119 microM (14.2 mg l(-1)) without any sign of substrate toxicity, and that it is able to transform vinyl chloride and 1,1,2-trichloroethane.


Subject(s)
Bacteria, Aerobic/metabolism , Butanes/metabolism , Chloroform/metabolism , Aerobiosis , Bacteria, Aerobic/isolation & purification , Biotransformation , Environmental Pollutants/metabolism , Hydrocarbons, Chlorinated/metabolism , Kinetics , Trichloroethanes/metabolism , Vinyl Chloride/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...